Mcopy firmware with optional capper feature

This commit is contained in:
Matt McWilliams 2022-07-17 11:05:20 -04:00
parent 3f759f5678
commit f55b72044c
1 changed files with 260 additions and 0 deletions
ino/mcopy_mono_firmware_camera_bolex_capper

View File

@ -0,0 +1,260 @@
/**
* This is a specialized version of the mcopy firmware for
* controlling the JK104-R/Bolex camera of the optical printer
* at MONO NO AWARE. This uses a Sainsmart 8 Solid State Relay
* board wired into the directional switches of a JK104-R/Bolex camera
* controller box, a secondary projector controller box and it
* runs on an Arduino Uno compatible board.
*
* 7/17/2022
*
* This firmware has been modified to include an optional capper element.
*
* Pins
* 12 - CH1 - BWD CAM 1
* 11 - CH2 - FWD CAM 1 (bridged to CH1)
* 10 - CH3 - BWD CAM 1
* 09 - CH4 - FWD CAM 1 (bridged to CH3)
* 08 - CH5 - BWD CAM 1
* - controls the directional relays of the Bolex Camera.
* 07 - CH8 - 4 pronged trigger cable
* - triggers the camera
*
* 06 - SIGNAL - Capper servo signal
* 05 - GND - Closed circuit to GND in cable to detect capper is attached.
*/
#include <Servo.h>
boolean debug_state = false;
Servo servo;
const int cam_bwd_pin_1 = 12;
const int cam_fwd_pin_1 = 11;
const int cam_bwd_pin_2 = 10;
const int cam_fwd_pin_2 = 9;
const int cam_bwd_pin_3 = 8;
const int cam_pin = 7;
const int capper_pin = 6; //servo
const int capper_exists_pin = 5;
const int cam_momentary = 60;
const int cam_time = 600; //secondary projector speed
const int cam_delay = 42;
volatile boolean cam_dir = true;
volatile boolean cam_running = false;
volatile boolean capper_exists = false;
volatile boolean capper_state = false;
volatile int capper_angle = 0;
const int capper_on_angle = 153; // tune this variable to your servo
const int capper_off_angle = 93; // -60 degrees apart
//SG-5010 speed 0.18s / 60 degree
//
//converted to milliseconds/angle
const float servo_speed = 400.0 / 60.0;
const char cmd_camera = 'c';
const char cmd_cam_forward = 'e';
const char cmd_cam_backward = 'f';
const char cmd_debug = 'd';
const char cmd_connect = 'i';
volatile char cmd_char = 'z';
const char cmd_mcopy_identifier = 'm';
const char cmd_cam_identifier = 'k';
const char cmd_camera_capper_identifier = '8';
const char cmd_capper_on = 'A';
const char cmd_capper_off = 'B';
const int serialDelay = 5;
void setup() {
Serial.begin(57600);
Serial.flush();
Serial.setTimeout(serialDelay);
pinMode(cam_fwd_pin_1, OUTPUT);
pinMode(cam_bwd_pin_1, OUTPUT);
pinMode(cam_fwd_pin_2, OUTPUT);
pinMode(cam_bwd_pin_2, OUTPUT);
pinMode(cam_bwd_pin_3, OUTPUT);
pinMode(cam_pin, OUTPUT);
pinMode(capper_exists_pin, INPUT_PULLUP);
digitalWrite(cam_pin, LOW);
digitalWrite(cam_fwd_pin_1, HIGH);
digitalWrite(cam_fwd_pin_2, HIGH);
digitalWrite(cam_bwd_pin_1, LOW);
digitalWrite(cam_bwd_pin_2, LOW);
digitalWrite(cam_bwd_pin_3, LOW);
capper_init();
}
void loop() {
if (Serial.available()) {
/* read the most recent byte */
cmd_char = (char)Serial.read();
}
if (cmd_char != 'z') {
cmd(cmd_char);
cmd_char = 'z';
}
}
void cmd (char val) {
if (val == cmd_debug) {
debug();
} else if (val == cmd_connect) {
connect();
} else if (val == cmd_mcopy_identifier) {
identify();
} else if (val == cmd_camera) {
camera();
} else if (val == cmd_cam_forward) {
cam_direction(true);
} else if (val == cmd_cam_backward) {
cam_direction(false);
} else if (capper_exists && val == cmd_capper_on) {
capper_on(false, false);
} else if (capper_exists && val == cmd_capper_off) {
capper_off(false, false);
}
}
void debug () {
debug_state = true;
Serial.println(cmd_debug);
log("debugging enabled");
}
void connect () {
Serial.println(cmd_connect);
log("connect()");
}
void identify () {
if (capper_exists) {
Serial.println(cmd_camera_capper_identifier);
} else {
Serial.println(cmd_cam_identifier);
}
log("identify()");
}
void camera () {
if (!cam_running) {
cam_running = true;
digitalWrite(cam_pin, HIGH);
delay(cam_momentary);
digitalWrite(cam_pin, LOW);
delay(cam_time - cam_momentary + cam_delay);
Serial.println(cmd_camera);
log("camera()");
cam_running = false;
}
}
void cam_direction (boolean state) {
cam_dir = state;
digitalWrite(cam_fwd_pin_1, LOW);
digitalWrite(cam_fwd_pin_2, LOW);
digitalWrite(cam_bwd_pin_1, LOW);
digitalWrite(cam_bwd_pin_2, LOW);
digitalWrite(cam_bwd_pin_3, LOW);
if (state) {
digitalWrite(cam_fwd_pin_1, HIGH);
digitalWrite(cam_fwd_pin_2, HIGH);
Serial.println(cmd_cam_forward);
log("cam_direction -> true");
} else {
digitalWrite(cam_bwd_pin_1, HIGH);
digitalWrite(cam_bwd_pin_2, HIGH);
digitalWrite(cam_bwd_pin_3, HIGH);
Serial.println(cmd_cam_backward);
log("cam_direction -> false");
}
//delay(50); //delay after direction change to account for slippage of the belt
}
boolean does_capper_exist () {
boolean exists = false;
if (digitalRead(capper_exists_pin) == 0) {
exists = true;
}
return exists;
}
void capper_init () {
capper_exists = does_capper_exist();
if (capper_exists) {
log("Capper exists");
servo.attach(capper_pin);
capper_off(true, true);
}
}
void set_capper_angle (int newAngle) {
int delay_time = get_capper_delay(newAngle, capper_angle) + 50;
servo.write(newAngle);
delay(delay_time);
capper_angle = newAngle;
}
int get_capper_delay (int angleA, int angleB) {
int range = abs(angleA - angleB);
return (int) ceil((float) range * servo_speed);
}
void capper_off (boolean suppress, boolean force) {
int current_angle = servo.read();
if (capper_state || current_angle != capper_off_angle) {
set_capper_angle(capper_off_angle);
capper_state = false;
} else {
log("Capper already off");
}
log("cap_off()");
if (!suppress) {
Serial.println(cmd_capper_off);
}
}
void capper_on (boolean suppress, boolean force) {
int current_angle = servo.read();
if (!capper_state || current_angle != capper_on_angle) {
set_capper_angle(capper_on_angle);
capper_state = true;
} else {
log("Capper already on");
}
log("capper_on()");
if (!suppress) {
Serial.println(cmd_capper_on);
}
}
void log (String msg) {
if (debug_state) {
Serial.println(msg);
}
}