|
|
|
@ -1,338 +1,287 @@
|
|
|
|
|
//This is a modification of " Public Domain Parametric Involute Spur Gear (and involute helical gear and involute rack)
|
|
|
|
|
// by Leemon Baird, 2011, Leemon@Leemon.com
|
|
|
|
|
//http://www.thingiverse.com/thing:5505 "
|
|
|
|
|
// Kopfspiel
|
|
|
|
|
spiel = 0.05;
|
|
|
|
|
// Hoehe des Zahnkopfes ueber dem Teilkreis
|
|
|
|
|
modul=1;
|
|
|
|
|
// Laenge der Zahnstange
|
|
|
|
|
laenge_stange=50;
|
|
|
|
|
// Anzahl der Radzaehne
|
|
|
|
|
zahnzahl_ritzel=32;
|
|
|
|
|
// Hoehe der Zahnstange bis zur Waelzgeraden
|
|
|
|
|
hoehe_stange=4;
|
|
|
|
|
// Durchmesser der Mittelbohrung des Stirnrads
|
|
|
|
|
bohrung_ritzel=4;
|
|
|
|
|
// Breite der Zaehne
|
|
|
|
|
breite=8.8;
|
|
|
|
|
// Eingriffswinkel, Standardwert = 20 grad gemaess DIN 867. Sollte nicht groesser als 45 grad sein.
|
|
|
|
|
eingriffswinkel=20;
|
|
|
|
|
// Schraegungswinkel zur Rotationsachse, Standardwert = 0 grad (Geradverzahnung)
|
|
|
|
|
schraegungswinkel=20;
|
|
|
|
|
// Komponenten zusammengebaut fuer Konstruktion oder auseinander zum 3D-Druck
|
|
|
|
|
zusammen_gebaut=0;
|
|
|
|
|
// Loecher zur Material-/Gewichtsersparnis bzw. Oberflaechenvergoesserung erzeugen, wenn Geometrie erlaubt
|
|
|
|
|
optimiert = 1;
|
|
|
|
|
|
|
|
|
|
//Modifications by racatack June 2016:
|
|
|
|
|
// v1.0, 6/24/16:
|
|
|
|
|
// -Incorporated 'module InvoluteGear_rack()' from the 11/11/15 comment by quisam2342 in thing:5505 to fix noted problems in rack generation at various tooth sizes
|
|
|
|
|
// -Added a section for an optional 'backboard' that can be used to stiffen an otherwise skinny rack
|
|
|
|
|
// -Added sections for optional Stop Blocks at either or both ends of a rack
|
|
|
|
|
// -Removed extra gears from the example since I only need one pinion. See thing:5505 example section to gain more insight into gear generation.
|
|
|
|
|
//v1.1, 6/28/16:
|
|
|
|
|
// -Added sections to optionally create mounting flanges on the bottom/backside of the rack. Flanges can be at either or both ends, or longitudinal.
|
|
|
|
|
/* Bibliothek fuer ein Zahstangen-Radpaar fuer Thingiverse Customizer
|
|
|
|
|
|
|
|
|
|
//TO GENERATE A CUSTOM RACK AND PINION ENTER INPUTS AT LINES 345-377
|
|
|
|
|
Enthaelt die Module
|
|
|
|
|
zahnstange(modul, laenge, hoehe, breite, eingriffswinkel = 20, schraegungswinkel = 0)
|
|
|
|
|
stirnrad(modul, zahnzahl, breite, bohrung, eingriffswinkel = 20, schraegungswinkel = 0, optimiert = true)
|
|
|
|
|
zahnstange_und_ritzel (modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel=20, schraegungswinkel=0, zusammen_gebaut=true, optimiert=true)
|
|
|
|
|
|
|
|
|
|
Autor: Dr Joerg Janssen
|
|
|
|
|
Stand: 6. Januar 2017
|
|
|
|
|
Version: 2.0
|
|
|
|
|
Lizenz: Creative Commons - Attribution, Non Commercial, Share Alike
|
|
|
|
|
|
|
|
|
|
Erlaubte Module nach DIN 780:
|
|
|
|
|
0.05 0.06 0.08 0.10 0.12 0.16
|
|
|
|
|
0.20 0.25 0.3 0.4 0.5 0.6
|
|
|
|
|
0.7 0.8 0.9 1 1.25 1.5
|
|
|
|
|
2 2.5 3 4 5 6
|
|
|
|
|
8 10 12 16 20 25
|
|
|
|
|
32 40 50 60
|
|
|
|
|
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Public Domain Parametric Involute Spur Gear (and involute helical gear and involute rack)
|
|
|
|
|
// version 1.1
|
|
|
|
|
// by Leemon Baird, 2011, Leemon@Leemon.com
|
|
|
|
|
//http://www.thingiverse.com/thing:5505
|
|
|
|
|
//
|
|
|
|
|
// This file is public domain. Use it for any purpose, including commercial
|
|
|
|
|
// applications. Attribution would be nice, but is not required. There is
|
|
|
|
|
// no warranty of any kind, including its correctness, usefulness, or safety.
|
|
|
|
|
//
|
|
|
|
|
// This is parameterized involute spur (or helical) gear. It is much simpler and less powerful than
|
|
|
|
|
// others on Thingiverse. But it is public domain. I implemented it from scratch from the
|
|
|
|
|
// descriptions and equations on Wikipedia and the web, using Mathematica for calculations and testing,
|
|
|
|
|
// and I now release it into the public domain.
|
|
|
|
|
//
|
|
|
|
|
// http://en.wikipedia.org/wiki/Involute_gear
|
|
|
|
|
// http://en.wikipedia.org/wiki/Gear
|
|
|
|
|
// http://en.wikipedia.org/wiki/List_of_gear_nomenclature
|
|
|
|
|
// http://gtrebaol.free.fr/doc/catia/spur_gear.html
|
|
|
|
|
// http://www.cs.cmu.edu/~rapidproto/mechanisms/chpt7.html
|
|
|
|
|
//
|
|
|
|
|
// The module gear() gives an involute spur gear, with reasonable defaults for all the parameters.
|
|
|
|
|
// Normally, you should just choose the first 4 parameters, and let the rest be default values.
|
|
|
|
|
// The module gear() gives a gear in the XY plane, centered on the origin, with one tooth centered on
|
|
|
|
|
// the positive Y axis. The various functions below it take the same parameters, and return various
|
|
|
|
|
// measurements for the gear. The most important is pitch_radius, which tells how far apart to space
|
|
|
|
|
// gears that are meshing, and adendum_radius, which gives the size of the region filled by the gear.
|
|
|
|
|
// A gear has a "pitch circle", which is an invisible circle that cuts through the middle of each
|
|
|
|
|
// tooth (though not the exact center). In order for two gears to mesh, their pitch circles should
|
|
|
|
|
// just touch. So the distance between their centers should be pitch_radius() for one, plus pitch_radius()
|
|
|
|
|
// for the other, which gives the radii of their pitch circles.
|
|
|
|
|
//
|
|
|
|
|
// In order for two gears to mesh, they must have the same mm_per_tooth and pressure_angle parameters.
|
|
|
|
|
// mm_per_tooth gives the number of millimeters of arc around the pitch circle covered by one tooth and one
|
|
|
|
|
// space between teeth. The pitch angle controls how flat or bulged the sides of the teeth are. Common
|
|
|
|
|
// values include 14.5 degrees and 20 degrees, and occasionally 25. Though I've seen 28 recommended for
|
|
|
|
|
// plastic gears. Larger numbers bulge out more, giving stronger teeth, so 28 degrees is the default here.
|
|
|
|
|
//
|
|
|
|
|
// The ratio of number_of_teeth for two meshing gears gives how many times one will make a full
|
|
|
|
|
// revolution when the the other makes one full revolution. If the two numbers are coprime (i.e.
|
|
|
|
|
// are not both divisible by the same number greater than 1), then every tooth on one gear
|
|
|
|
|
// will meet every tooth on the other, for more even wear. So coprime numbers of teeth are good.
|
|
|
|
|
//
|
|
|
|
|
// The module rack() gives a rack, which is a bar with teeth. A rack can mesh with any
|
|
|
|
|
// gear that has the same mm_per_tooth and pressure_angle.
|
|
|
|
|
//
|
|
|
|
|
// Some terminology:
|
|
|
|
|
// The outline of a gear is a smooth circle (the "pitch circle") which has mountains and valleys
|
|
|
|
|
// added so it is toothed. So there is an inner circle (the "root circle") that touches the
|
|
|
|
|
// base of all the teeth, an outer circle that touches the tips of all the teeth,
|
|
|
|
|
// and the invisible pitch circle in between them. There is also a "base circle", which can be smaller than
|
|
|
|
|
// all three of the others, which controls the shape of the teeth. The side of each tooth lies on the path
|
|
|
|
|
// that the end of a string would follow if it were wrapped tightly around the base circle, then slowly unwound.
|
|
|
|
|
// That shape is an "involute", which gives this type of gear its name.
|
|
|
|
|
//
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
/* [Hidden] */
|
|
|
|
|
pi = 3.14159;
|
|
|
|
|
rad = 57.29578;
|
|
|
|
|
$fn = 96;
|
|
|
|
|
|
|
|
|
|
//An involute spur gear, with reasonable defaults for all the parameters.
|
|
|
|
|
//Normally, you should just choose the first 4 parameters, and let the rest be default values.
|
|
|
|
|
//Meshing gears must match in mm_per_tooth, pressure_angle, and twist,
|
|
|
|
|
//and be separated by the sum of their pitch radii, which can be found with pitch_radius().
|
|
|
|
|
module gear (
|
|
|
|
|
mm_per_tooth = 3, //this is the "circular pitch", the circumference of the pitch circle divided by the number of teeth
|
|
|
|
|
number_of_teeth = 11, //total number of teeth around the entire perimeter
|
|
|
|
|
thickness = 6, //thickness of gear in mm
|
|
|
|
|
hole_diameter = 3, //diameter of the hole in the center, in mm
|
|
|
|
|
twist = 0, //teeth rotate this many degrees from bottom of gear to top. 360 makes the gear a screw with each thread going around once
|
|
|
|
|
teeth_to_hide = 0, //number of teeth to delete to make this only a fraction of a circle
|
|
|
|
|
pressure_angle = 28, //Controls how straight or bulged the tooth sides are. In degrees.
|
|
|
|
|
clearance = 0.0, //gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters)
|
|
|
|
|
backlash = 0.0 //gap between two meshing teeth, in the direction along the circumference of the pitch circle
|
|
|
|
|
) {
|
|
|
|
|
assign(pi = 3.1415926)
|
|
|
|
|
assign(p = mm_per_tooth * number_of_teeth / pi / 2) //radius of pitch circle
|
|
|
|
|
assign(c = p + mm_per_tooth / pi - clearance) //radius of outer circle
|
|
|
|
|
assign(b = p*cos(pressure_angle)) //radius of base circle
|
|
|
|
|
assign(r = p-(c-p)-clearance) //radius of root circle
|
|
|
|
|
assign(t = mm_per_tooth/2-backlash/2) //tooth thickness at pitch circle
|
|
|
|
|
assign(k = -iang(b, p) - t/2/p/pi*180) { //angle to where involute meets base circle on each side of tooth
|
|
|
|
|
difference() {
|
|
|
|
|
for (i = [0:number_of_teeth-teeth_to_hide-1] )
|
|
|
|
|
rotate([0,0,i*360/number_of_teeth])
|
|
|
|
|
linear_extrude(height = thickness, center = true, convexity = 10, twist = twist)
|
|
|
|
|
polygon(
|
|
|
|
|
points=[
|
|
|
|
|
[0, -hole_diameter/10],
|
|
|
|
|
polar(r, -181/number_of_teeth),
|
|
|
|
|
polar(r, r<b ? k : -180/number_of_teeth),
|
|
|
|
|
q7(0/5,r,b,c,k, 1),q7(1/5,r,b,c,k, 1),q7(2/5,r,b,c,k, 1),q7(3/5,r,b,c,k, 1),q7(4/5,r,b,c,k, 1),q7(5/5,r,b,c,k, 1),
|
|
|
|
|
q7(5/5,r,b,c,k,-1),q7(4/5,r,b,c,k,-1),q7(3/5,r,b,c,k,-1),q7(2/5,r,b,c,k,-1),q7(1/5,r,b,c,k,-1),q7(0/5,r,b,c,k,-1),
|
|
|
|
|
polar(r, r<b ? -k : 180/number_of_teeth),
|
|
|
|
|
polar(r, 181/number_of_teeth)
|
|
|
|
|
],
|
|
|
|
|
paths=[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]]
|
|
|
|
|
);
|
|
|
|
|
cylinder(h=2*thickness+1, r=hole_diameter/2, center=true, $fn=20);
|
|
|
|
|
/* Wandelt Radian in Grad um */
|
|
|
|
|
function grad(eingriffswinkel) = eingriffswinkel*rad;
|
|
|
|
|
|
|
|
|
|
/* Wandelt Grad in Radian um */
|
|
|
|
|
function radian(eingriffswinkel) = eingriffswinkel/rad;
|
|
|
|
|
|
|
|
|
|
/* Wandelt 2D-Polarkoordinaten in kartesische um
|
|
|
|
|
Format: radius, phi; phi = Winkel zur x-Achse auf xy-Ebene */
|
|
|
|
|
function pol_zu_kart(polvect) = [
|
|
|
|
|
polvect[0]*cos(polvect[1]),
|
|
|
|
|
polvect[0]*sin(polvect[1])
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
/* Kreisevolventen-Funktion:
|
|
|
|
|
Gibt die Polarkoordinaten einer Kreisevolvente aus
|
|
|
|
|
r = Radius des Grundkreises
|
|
|
|
|
rho = Abrollwinkel in Grad */
|
|
|
|
|
function ev(r,rho) = [
|
|
|
|
|
r/cos(rho),
|
|
|
|
|
grad(tan(rho)-radian(rho))
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
/* Wandelt Kugelkoordinaten in kartesische um
|
|
|
|
|
Format: radius, theta, phi; theta = Winkel zu z-Achse, phi = Winkel zur x-Achse auf xy-Ebene */
|
|
|
|
|
function kugel_zu_kart(vect) = [
|
|
|
|
|
vect[0]*sin(vect[1])*cos(vect[2]),
|
|
|
|
|
vect[0]*sin(vect[1])*sin(vect[2]),
|
|
|
|
|
vect[0]*cos(vect[1])
|
|
|
|
|
];
|
|
|
|
|
|
|
|
|
|
/* prueft, ob eine Zahl gerade ist
|
|
|
|
|
= 1, wenn ja
|
|
|
|
|
= 0, wenn die Zahl nicht gerade ist */
|
|
|
|
|
function istgerade(zahl) =
|
|
|
|
|
(zahl == floor(zahl/2)*2) ? 1 : 0;
|
|
|
|
|
|
|
|
|
|
/* Kopiert und dreht einen Koerper */
|
|
|
|
|
module kopiere(vect, zahl, abstand, winkel){
|
|
|
|
|
for(i = [0:zahl-1]){
|
|
|
|
|
translate(v=vect*abstand*i)
|
|
|
|
|
rotate(a=i*winkel, v = [0,0,1])
|
|
|
|
|
children(0);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/* Zahnstange
|
|
|
|
|
modul = Hoehe des Zahnkopfes ueber der Waelzgeraden
|
|
|
|
|
laenge = Laenge der Zahnstange
|
|
|
|
|
hoehe = Hoehe der Zahnstange bis zur Waelzgeraden
|
|
|
|
|
breite = Breite der Zaehne
|
|
|
|
|
eingriffswinkel = Eingriffswinkel, Standardwert = 20 grad gemaess DIN 867. Sollte nicht groesser als 45 grad sein.
|
|
|
|
|
schraegungswinkel = Schraegungswinkel zur Zahnstangen-Querachse; 0 grad = Geradverzahnung */
|
|
|
|
|
module zahnstange(modul, laenge, hoehe, breite, eingriffswinkel = 20, schraegungswinkel = 0) {
|
|
|
|
|
|
|
|
|
|
// Dimensions-Berechnungen
|
|
|
|
|
//modul=0.99;// modul*(1-spiel);
|
|
|
|
|
c = modul / 6; // Kopfspiel
|
|
|
|
|
mx = modul/cos(schraegungswinkel); // Durch Schraegungswinkel verzerrtes modul in x-Richtung
|
|
|
|
|
a = 2*mx*tan(eingriffswinkel)+c*tan(eingriffswinkel); // Flankenbreite
|
|
|
|
|
b = pi*mx/2-2*mx*tan(eingriffswinkel); // Kopfbreite
|
|
|
|
|
x = breite*tan(schraegungswinkel); // Verschiebung der Oberseite in x-Richtung durch Schraegungswinkel
|
|
|
|
|
nz = ceil((laenge+abs(2*x))/(pi*mx)); // Anzahl der Zaehne
|
|
|
|
|
|
|
|
|
|
translate([-pi*mx*(floor(nz/2)-1)-a-b/2,-modul,0]){
|
|
|
|
|
intersection(){
|
|
|
|
|
kopiere([1,0,0], nz, pi*mx, 0){
|
|
|
|
|
polyhedron(
|
|
|
|
|
points=[[0,-c,0], [a,2*modul,0], [a+b,2*modul,0], [2*a+b,-c,0], [pi*mx,-c,0], [pi*mx,modul-hoehe,0], [0,modul-hoehe,0], // Unterseite
|
|
|
|
|
[0+x,-c,breite], [a+x,2*modul,breite], [a+b+x,2*modul,breite], [2*a+b+x,-c,breite], [pi*mx+x,-c,breite], [pi*mx+x,modul-hoehe,breite], [0+x,modul-hoehe,breite]], // Oberseite
|
|
|
|
|
faces=[[6,5,4,3,2,1,0], // Unterseite
|
|
|
|
|
[1,8,7,0],
|
|
|
|
|
[9,8,1,2],
|
|
|
|
|
[10,9,2,3],
|
|
|
|
|
[11,10,3,4],
|
|
|
|
|
[12,11,4,5],
|
|
|
|
|
[13,12,5,6],
|
|
|
|
|
[7,13,6,0],
|
|
|
|
|
[7,8,9,10,11,12,13], // Oberseite
|
|
|
|
|
]
|
|
|
|
|
);
|
|
|
|
|
};
|
|
|
|
|
translate([abs(x),-hoehe+modul-0.5,-0.5]){
|
|
|
|
|
cube([laenge,hoehe+modul+1,breite+1]);
|
|
|
|
|
}
|
|
|
|
|
};
|
|
|
|
|
};
|
|
|
|
|
//these 4 functions are used by gear
|
|
|
|
|
function polar(r,theta) = r*[sin(theta), cos(theta)]; //convert polar to cartesian coordinates
|
|
|
|
|
function iang(r1,r2) = sqrt((r2/r1)*(r2/r1) - 1)/3.1415926*180 - acos(r1/r2); //unwind a string this many degrees to go from radius r1 to radius r2
|
|
|
|
|
function q7(f,r,b,r2,t,s) = q6(b,s,t,(1-f)*max(b,r)+f*r2); //radius a fraction f up the curved side of the tooth
|
|
|
|
|
function q6(b,s,t,d) = polar(d,s*(iang(b,d)+t)); //point at radius d on the involute curve
|
|
|
|
|
|
|
|
|
|
//a rack, which is a straight line with teeth (the same as a segment from a giant gear with a huge number of teeth).
|
|
|
|
|
//The "pitch circle" is a line along the X axis.
|
|
|
|
|
//module rack (
|
|
|
|
|
// mm_per_tooth = 3, //this is the "circular pitch", the circumference of the pitch circle divided by the number //of teeth
|
|
|
|
|
// number_of_teeth = 11, //total number of teeth along the rack
|
|
|
|
|
// thickness = 6, //thickness of rack in mm (affects each tooth)
|
|
|
|
|
// height = 120, //height of rack in mm, from tooth top to far side of rack.
|
|
|
|
|
// pressure_angle = 28, //Controls how straight or bulged the tooth sides are. In degrees.
|
|
|
|
|
// backlash = 0.0 //gap between two meshing teeth, in the direction along the circumference of the pitch circle
|
|
|
|
|
//) {
|
|
|
|
|
// assign(pi = 3.1415926)
|
|
|
|
|
// assign(a = mm_per_tooth / pi) //addendum
|
|
|
|
|
// assign(t = a*cos(pressure_angle)-1) //tooth side is tilted so top/bottom corners move this amount
|
|
|
|
|
// for (i = [0:number_of_teeth-1] )
|
|
|
|
|
// translate([i*mm_per_tooth,0,0])
|
|
|
|
|
// linear_extrude(height = thickness, center = true, convexity = 10)
|
|
|
|
|
// polygon(
|
|
|
|
|
// points=[
|
|
|
|
|
// [-mm_per_tooth * 3/4, a-height],
|
|
|
|
|
// [-mm_per_tooth * 3/4 - backlash, -a],
|
|
|
|
|
// [-mm_per_tooth * 1/4 + backlash - t, -a],
|
|
|
|
|
// [-mm_per_tooth * 1/4 + backlash + t, a],
|
|
|
|
|
// [ mm_per_tooth * 1/4 - backlash - t, a],
|
|
|
|
|
// [ mm_per_tooth * 1/4 - backlash + t, -a],
|
|
|
|
|
// [ mm_per_tooth * 3/4 + backlash, -a],
|
|
|
|
|
// [ mm_per_tooth * 3/4, a-height],
|
|
|
|
|
// ],
|
|
|
|
|
// paths=[[0,1,2,3,4,5,6,7]]
|
|
|
|
|
// );
|
|
|
|
|
//};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//rac note - This section generates the rack body and teeth. It is from the 11/11/15 comment by quisam2342 in thing:5505 to fix noted problems with rack generation, and replaces the original 'module rack()'
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// The module InvoluteGear_rack() gives a involute gear rack, which is a bar with teeth.
|
|
|
|
|
// A rack can mesh with any gear that has the same mm_per_tooth and pressure_angle.
|
|
|
|
|
// The "pitch circle" is a line along the X axis.
|
|
|
|
|
//
|
|
|
|
|
// mm_per_tooth this is the "circular pitch", the circumference of the pitch circle
|
|
|
|
|
// divided by the number of teeth
|
|
|
|
|
//
|
|
|
|
|
// number_of_teeth total number of teeth along the rack
|
|
|
|
|
//
|
|
|
|
|
// thickness thickness of rack in mm
|
|
|
|
|
//
|
|
|
|
|
// height height of rack in mm, from tooth top to far side of rack
|
|
|
|
|
//
|
|
|
|
|
// pressure_angle controls how straight or bulged the tooth sides are, in degrees
|
|
|
|
|
//
|
|
|
|
|
// clearance gap between top of a tooth on one gear and bottom of valley
|
|
|
|
|
// on a meshing gear, in millimeters
|
|
|
|
|
//
|
|
|
|
|
// backlash gap between two meshing teeth, in the direction along the circumference
|
|
|
|
|
// of the pitch circle
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
module InvoluteGear_rack (
|
|
|
|
|
|
|
|
|
|
//Default numbers in this section get overridden by numbers in 'example rack and pinion' section, so set your values there.
|
|
|
|
|
|
|
|
|
|
mm_per_tooth = 3, //all meshing gears need the same mm_per_tooth
|
|
|
|
|
number_of_teeth = 11,
|
|
|
|
|
thickness = 6,
|
|
|
|
|
height = 4,
|
|
|
|
|
|
|
|
|
|
//rac - Added variables for backboard, stop blocks and mounting flanges:
|
|
|
|
|
//set your values in the 'example rack and pinion' section, as defaults given here will be overridden by that section
|
|
|
|
|
backboard_thickness = 2.0,
|
|
|
|
|
backboard_height = 1.0,
|
|
|
|
|
side_flange_thickness = 0,
|
|
|
|
|
side_flange_height = 0,
|
|
|
|
|
flange_offset = 0,
|
|
|
|
|
stop_height = backboard_height,
|
|
|
|
|
left_stop_enable = 1,
|
|
|
|
|
right_stop_enable = 1,
|
|
|
|
|
flange_height = 0,
|
|
|
|
|
left_flange_enable = 1,
|
|
|
|
|
right_flange_enable = 1,
|
|
|
|
|
|
|
|
|
|
//These defaults are not redefined in the example section:
|
|
|
|
|
pressure_angle = 28, //all meshing gears need the same pressure_angle
|
|
|
|
|
clearance = 0.0,
|
|
|
|
|
backlash = 0.0
|
|
|
|
|
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
{
|
|
|
|
|
// addendum - tooth height above pitch line
|
|
|
|
|
assign(addendum = module_value(mm_per_tooth) - clearance)
|
|
|
|
|
|
|
|
|
|
// dedendum - tooth height below pitch line
|
|
|
|
|
assign(dedendum = 1.25 * module_value(mm_per_tooth) )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (i = [0:number_of_teeth-1] )
|
|
|
|
|
translate([(i+0.5)*mm_per_tooth,height-addendum,0])
|
|
|
|
|
linear_extrude(height = thickness, center = true, convexity = 10) //'height' parameter here is not the same as 'height' parameter of module. Here it effectively is the width or thickness as the rack is extruded from one side-face to the other.
|
|
|
|
|
polygon(
|
|
|
|
|
points=[
|
|
|
|
|
[-1/2 * mm_per_tooth, addendum-height],
|
|
|
|
|
[-1/2 * mm_per_tooth, -dedendum],
|
|
|
|
|
[-1/4 * mm_per_tooth + backlash - dedendum * tan(pressure_angle), -dedendum],
|
|
|
|
|
[-1/4 * mm_per_tooth + backlash + addendum * tan(pressure_angle), addendum],
|
|
|
|
|
[ 1/4 * mm_per_tooth - backlash - addendum * tan(pressure_angle), addendum],
|
|
|
|
|
[ 1/4 * mm_per_tooth - backlash + dedendum * tan(pressure_angle), -dedendum],
|
|
|
|
|
[ 1/2 * mm_per_tooth, -dedendum],
|
|
|
|
|
[ 1/2 * mm_per_tooth, addendum-height],
|
|
|
|
|
],
|
|
|
|
|
paths=[[0,1,2,3,4,5,6,7]]
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
//rac -added - This section optionally creates a 'stop block' at the left end of the rack
|
|
|
|
|
translate([(-0.11)*mm_per_tooth,0,0.5*(-thickness)])
|
|
|
|
|
linear_extrude(height = left_stop_enable*thickness, center = false, convexity = 10)
|
|
|
|
|
polygon(
|
|
|
|
|
points=[
|
|
|
|
|
[-1/2 * mm_per_tooth,height+stop_height], //stop_height extends stop block above teeth, change the number to change the extension amount
|
|
|
|
|
[-1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,height+stop_height], //stop_height extends stop block above teeth, change the number to change the extension amount
|
|
|
|
|
],
|
|
|
|
|
paths=[[0,1,2,3]]
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//rac -added - This section optionally creates a 'stop block' at the right end of the rack
|
|
|
|
|
translate([(0.11+number_of_teeth)*mm_per_tooth,0,0.5*(-thickness)])
|
|
|
|
|
linear_extrude(height = right_stop_enable*thickness, center = false, convexity = 10)
|
|
|
|
|
polygon(
|
|
|
|
|
points=[
|
|
|
|
|
[-1/2 * mm_per_tooth,height+stop_height], //stop_height extends stop block above teeth
|
|
|
|
|
[-1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,height+stop_height], //stop_height extends stop block above teeth
|
|
|
|
|
],
|
|
|
|
|
paths=[[0,1,2,3]]
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//rac -added - This section optionally creates a flange at the left rear of the rack
|
|
|
|
|
translate([(-0.11)*mm_per_tooth,0,0.5*(-thickness)])
|
|
|
|
|
linear_extrude(height = left_flange_enable*thickness, center = false, convexity = 10)
|
|
|
|
|
polygon(
|
|
|
|
|
points=[
|
|
|
|
|
[-1/2 * mm_per_tooth,-flange_height], //flange_height extends flange beyond rack bottom
|
|
|
|
|
[-1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,-flange_height], //flange_height extends flange beyond rack bottom
|
|
|
|
|
],
|
|
|
|
|
paths=[[0,1,2,3]]
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//rac -added - This section optionally creates a flange at the right rear of the rack
|
|
|
|
|
translate([(0.11+number_of_teeth)*mm_per_tooth,0,0.5*(-thickness)])
|
|
|
|
|
linear_extrude(height = right_flange_enable*thickness, center = false, convexity = 10)
|
|
|
|
|
polygon(
|
|
|
|
|
points=[
|
|
|
|
|
[-1/2 * mm_per_tooth,-flange_height], //flange_height extends flange beyond rack bottom
|
|
|
|
|
[-1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,-flange_height], //flange_height extends flange beyond rack bottom
|
|
|
|
|
],
|
|
|
|
|
paths=[[0,1,2,3]]
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//rac -added - This section optionally creates a 'Backboard' on one side of the rack. Can be used to add stiffness for a 'thin' rack (i.e. a rack with low height and/or thickness numbers) or if a large negative height is used it can extend under the rack as a mounting flange.
|
|
|
|
|
for (i = [0:number_of_teeth-1] )
|
|
|
|
|
translate([(i+0.5)*mm_per_tooth,0,0.5*(-thickness+backboard_thickness)])
|
|
|
|
|
//0.5*(-thickness+backboard_thickness) starts the backboard at one side of the rack and extrudes it inward
|
|
|
|
|
linear_extrude(height = backboard_thickness, center = true, convexity = 10)
|
|
|
|
|
polygon(
|
|
|
|
|
points=[
|
|
|
|
|
[-1/2 * mm_per_tooth,height+backboard_height], //backboard_height extends backboard above teeth
|
|
|
|
|
[-1/2 * mm_per_tooth,0],
|
|
|
|
|
|
|
|
|
|
[ 1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,height+backboard_height], //backboard_height extends backboard above teeth
|
|
|
|
|
],
|
|
|
|
|
paths=[[0,1,2,3]]
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
//rac -added - This section optionally creates a Rear Side-Flange on along one side of the rack. Can be used to add stiffness for a 'thin' rack (i.e. a rack with low height and/or thickness numbers) or it can be used as a mounting flange.
|
|
|
|
|
for (i = [0:number_of_teeth-1] )
|
|
|
|
|
translate([(i+0.5)*mm_per_tooth,0,0.5*(-thickness+side_flange_thickness)+flange_offset])
|
|
|
|
|
//0.5*(-side_flange_thickness) starts the backboard at one side of the rack and extrudes it inward. flange_offset moves the flange toward the other side of the rack
|
|
|
|
|
linear_extrude(height = side_flange_thickness, center = true, convexity = 10)
|
|
|
|
|
polygon(
|
|
|
|
|
points=[
|
|
|
|
|
[-1/2 * mm_per_tooth,-side_flange_height], //side_flange_height extends side_flange beyond rack bottom
|
|
|
|
|
[-1/2 * mm_per_tooth,0],
|
|
|
|
|
|
|
|
|
|
[ 1/2 * mm_per_tooth,0],
|
|
|
|
|
[ 1/2 * mm_per_tooth,-side_flange_height], //side_flange_height extends backboard beyond rack bottom
|
|
|
|
|
],
|
|
|
|
|
paths=[[0,1,2,3]]
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Stirnrad
|
|
|
|
|
modul = Hoehe des Zahnkopfes ueber dem Teilkreis
|
|
|
|
|
zahnzahl = Anzahl der Radzaehne
|
|
|
|
|
breite = Zahnbreite
|
|
|
|
|
bohrung = Durchmesser der Mittelbohrung
|
|
|
|
|
eingriffswinkel = Eingriffswinkel, Standardwert = 20 grad gemaess DIN 867. Sollte nicht groesser als 45 grad sein.
|
|
|
|
|
schraegungswinkel = Schraegungswinkel zur Rotationsachse; 0 grad = Geradverzahnung
|
|
|
|
|
optimiert = Loecher zur Material-/Gewichtsersparnis bzw. Oberflaechenvergoesserung erzeugen, wenn Geometrie erlaubt (= 1, wenn wahr) */
|
|
|
|
|
module stirnrad(modul, zahnzahl, breite, bohrung, eingriffswinkel = 20, schraegungswinkel = 0, optimiert = true) {
|
|
|
|
|
|
|
|
|
|
//These 5 functions let the user find the derived dimensions of the gear.
|
|
|
|
|
//A gear fits within a circle of radius outer_radius, and two gears should have
|
|
|
|
|
//their centers separated by the sum of their pictch_radius.
|
|
|
|
|
function circular_pitch (mm_per_tooth=3) = mm_per_tooth; //tooth density expressed as "circular pitch" in millimeters
|
|
|
|
|
function diametral_pitch (mm_per_tooth=3) = 3.1415926 / mm_per_tooth; //tooth density expressed as "diametral pitch" in teeth per millimeter
|
|
|
|
|
function module_value (mm_per_tooth=3) = mm_per_tooth / 3.1415926; //tooth density expressed as "module" or "modulus" in millimeters
|
|
|
|
|
function pitch_radius (mm_per_tooth=3,number_of_teeth=11) = mm_per_tooth * number_of_teeth / 3.1415926 / 2;
|
|
|
|
|
function outer_radius (mm_per_tooth=3,number_of_teeth=11,clearance=0.1) //The gear fits entirely within a cylinder of this radius.
|
|
|
|
|
= mm_per_tooth*(1+number_of_teeth/2)/3.1415926 - clearance;
|
|
|
|
|
// Dimensions-Berechnungen
|
|
|
|
|
d = modul * zahnzahl; // Teilkreisdurchmesser
|
|
|
|
|
r = d / 2; // Teilkreisradius
|
|
|
|
|
alpha_stirn = atan(tan(eingriffswinkel)/cos(schraegungswinkel));// Schraegungswinkel im Stirnschnitt
|
|
|
|
|
db = d * cos(alpha_stirn); // Grundkreisdurchmesser
|
|
|
|
|
rb = db / 2; // Grundkreisradius
|
|
|
|
|
da = (modul <1)? d + modul * 2.2 : d + modul * 2; // Kopfkreisdurchmesser nach DIN 58400 bzw. DIN 867
|
|
|
|
|
ra = da / 2; // Kopfkreisradius
|
|
|
|
|
c = (zahnzahl <3)? 0 : modul/6; // Kopfspiel
|
|
|
|
|
df = d - 2 * (modul + c); // Fusskreisdurchmesser
|
|
|
|
|
rf = df / 2; // Fusskreisradius
|
|
|
|
|
rho_ra = acos(rb/ra); // maximaler Abrollwinkel;
|
|
|
|
|
// Evolvente beginnt auf Grundkreis und endet an Kopfkreis
|
|
|
|
|
rho_r = acos(rb/r); // Abrollwinkel am Teilkreis;
|
|
|
|
|
// Evolvente beginnt auf Grundkreis und endet an Kopfkreis
|
|
|
|
|
phi_r = grad(tan(rho_r)-radian(rho_r)); // Winkel zum Punkt der Evolvente auf Teilkreis
|
|
|
|
|
gamma = rad*breite/(r*tan(90-schraegungswinkel)); // Torsionswinkel fuer Extrusion
|
|
|
|
|
schritt = rho_ra/16; // Evolvente wird in 16 Stuecke geteilt
|
|
|
|
|
tau = 360/zahnzahl; // Teilungswinkel
|
|
|
|
|
|
|
|
|
|
r_loch = (2*rf - bohrung)/8; // Radius der Loecher fuer Material-/Gewichtsersparnis
|
|
|
|
|
rm = bohrung/2+2*r_loch; // Abstand der Achsen der Loecher von der Hauptachse
|
|
|
|
|
z_loch = floor(2*pi*rm/(3*r_loch)); // Anzahl der Loecher fuer Material-/Gewichtsersparnis
|
|
|
|
|
|
|
|
|
|
optimiert = (optimiert && r >= breite*1.5 && d > 2*bohrung); // ist Optimierung sinnvoll?
|
|
|
|
|
|
|
|
|
|
// Zeichnung
|
|
|
|
|
union(){
|
|
|
|
|
rotate([0,0,-phi_r-90*(1-spiel)/zahnzahl]){ // Zahn auf x-Achse zentrieren;
|
|
|
|
|
// macht Ausrichtung mit anderen Raedern einfacher
|
|
|
|
|
|
|
|
|
|
linear_extrude(height = breite, twist = gamma){
|
|
|
|
|
difference(){
|
|
|
|
|
union(){
|
|
|
|
|
zahnbreite = (180*(1-spiel))/zahnzahl+2*phi_r;
|
|
|
|
|
circle(rf); // Fusskreis
|
|
|
|
|
for (rot = [0:tau:360]){
|
|
|
|
|
rotate (rot){ // "Zahnzahl-mal" kopieren und drehen
|
|
|
|
|
polygon(concat( // Zahn
|
|
|
|
|
[[0,0]], // Zahnsegment beginnt und endet im Ursprung
|
|
|
|
|
[for (rho = [0:schritt:rho_ra]) // von null Grad (Grundkreis)
|
|
|
|
|
// bis maximalen Evolventenwinkel (Kopfkreis)
|
|
|
|
|
pol_zu_kart(ev(rb,rho))], // Erste Evolventen-Flanke
|
|
|
|
|
|
|
|
|
|
[pol_zu_kart(ev(rb,rho_ra))], // Punkt der Evolvente auf Kopfkreis
|
|
|
|
|
|
|
|
|
|
[for (rho = [rho_ra:-schritt:0]) // von maximalen Evolventenwinkel (Kopfkreis)
|
|
|
|
|
// bis null Grad (Grundkreis)
|
|
|
|
|
pol_zu_kart([ev(rb,rho)[0], zahnbreite-ev(rb,rho)[1]])]
|
|
|
|
|
// Zweite Evolventen-Flanke
|
|
|
|
|
// (180*(1-spiel)) statt 180 Grad,
|
|
|
|
|
// um Spiel an den Flanken zu erlauben
|
|
|
|
|
)
|
|
|
|
|
);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
circle(r = rm+r_loch*1.49); // "Bohrung"
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// mit Materialersparnis
|
|
|
|
|
if (optimiert) {
|
|
|
|
|
linear_extrude(height = breite){
|
|
|
|
|
difference(){
|
|
|
|
|
circle(r = (bohrung+r_loch)/2);
|
|
|
|
|
circle(r = bohrung/2); // Bohrung
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
linear_extrude(height = (breite-r_loch/2 < breite*2/3) ? breite*2/3 : breite-r_loch/2){
|
|
|
|
|
difference(){
|
|
|
|
|
circle(r=rm+r_loch*1.51);
|
|
|
|
|
union(){
|
|
|
|
|
circle(r=(bohrung+r_loch)/2);
|
|
|
|
|
for (i = [0:1:z_loch]){
|
|
|
|
|
translate(kugel_zu_kart([rm,90,i*360/z_loch]))
|
|
|
|
|
circle(r = r_loch);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
// ohne Materialersparnis
|
|
|
|
|
else {
|
|
|
|
|
linear_extrude(height = breite){
|
|
|
|
|
difference(){
|
|
|
|
|
circle(r = rm+r_loch*1.51);
|
|
|
|
|
circle(r = bohrung/2);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
/* Zahnstange und Ritzel
|
|
|
|
|
modul = Hoehe des Zahnkopfes ueber dem Teilkreis
|
|
|
|
|
laenge_stange = Laenge der Zahnstange
|
|
|
|
|
zahnzahl_ritzel = Anzahl der Radzaehne am Ritzel
|
|
|
|
|
hoehe_stange = Hoehe der Zahnstange bis zur Waelzgeraden
|
|
|
|
|
bohrung_ritzel = Durchmesser der Mittelbohrung des Ritzels
|
|
|
|
|
breite = Breite der Zaehne
|
|
|
|
|
eingriffswinkel = Eingriffswinkel, Standardwert = 20 grad gemaess DIN 867. Sollte nicht groesser als 45 grad sein.
|
|
|
|
|
schraegungswinkel = Schraegungswinkel, Standardwert = 0 grad (Geradverzahnung)
|
|
|
|
|
optimiert = Loecher zur Material-/Gewichtsersparnis bzw. Oberflaechenvergoesserung erzeugen, wenn Geometrie erlaubt (= 1, wenn wahr)
|
|
|
|
|
|
|
|
|
|
Rack and Pinion
|
|
|
|
|
module = Height of the tooth head above the pitch circle
|
|
|
|
|
rack_length = Length of the rack
|
|
|
|
|
pinion_tooth_count = Number of teeth on the pinion
|
|
|
|
|
rack_height = Height of the rack up to the pitch line
|
|
|
|
|
pinion_bore = Diameter of the central bore of the pinion
|
|
|
|
|
width = Width of the teeth
|
|
|
|
|
contact_angle = Contact angle, default value = 20 degrees according to DIN 867. Should not exceed 45 degrees.
|
|
|
|
|
helix_angle = Helix angle, default value = 0 degrees (straight tooth)
|
|
|
|
|
optimized = Generate holes for material/weight saving or surface enhancement if geometry allows (= 1 if true)
|
|
|
|
|
*/
|
|
|
|
|
module zahnstange_und_rad (modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel=20, schraegungswinkel=0, zusammen_gebaut=true, optimiert=true) {
|
|
|
|
|
abstand = zusammen_gebaut? modul*zahnzahl_ritzel/2 : modul*zahnzahl_ritzel;
|
|
|
|
|
zahnstange(modul, laenge_stange, hoehe_stange, breite, eingriffswinkel, -schraegungswinkel);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
module rad_und_zahnstange (modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel=20, schraegungswinkel=0, zusammen_gebaut=true, optimiert=true) {
|
|
|
|
|
abstand = zusammen_gebaut? modul*zahnzahl_ritzel/2 : modul*zahnzahl_ritzel;
|
|
|
|
|
translate([0, abstand, 0]) {
|
|
|
|
|
if (istgerade(zahnzahl_ritzel)) {
|
|
|
|
|
rotate(90 + 180/zahnzahl_ritzel) {
|
|
|
|
|
stirnrad (modul, zahnzahl_ritzel, breite, bohrung_ritzel, eingriffswinkel, schraegungswinkel, optimiert);
|
|
|
|
|
}
|
|
|
|
|
} else {
|
|
|
|
|
rotate(a=90) {
|
|
|
|
|
stirnrad (modul, zahnzahl_ritzel, breite, bohrung_ritzel, eingriffswinkel, schraegungswinkel, optimiert);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
//zahnstange_und_rad (modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel, schraegungswinkel, zusammen_gebaut, optimiert);
|