GNAL/scad/libraries/gnal_v3.scad

827 lines
26 KiB
OpenSCAD

//GNAL v3 Shared Library
include <./path_extrude.scad>;
include <./threads.scad>;
include <./Triangles.scad>;
/**
* THREADS
* TOP (large screw)
* metric_thread (diameter=13.6, pitch=1.5 ,thread_size = 1.6, length = 21);
* TOP VOID
* metric_thread (diameter=13.6 + .5, pitch=1.5, thread_size = 1.6, length = 21);
* + clone translated along Z by 0.2mm
* BOTTOM (small screw)
* metric_thread (diameter=10, pitch=1.5, thread_size = 1.6, length=LEN);
* SINGLE LEVEL (middle screw)
*
*/
DEBUG = false;
FINE = 200;
OD = 10 + .5;
PITCH = 1.5;
THREAD = 1.6;
LEN = 21;
INSERT_D = 26;
SINGLE_THREAD_D = 12;
function X (start_r, spacing, fn, r, i) = (start_r + (r * spacing) + (i * calcIncrement(spacing, fn))) * cos(i * calcAngle(fn));
function Y (start_r, spacing, fn, r, i) = (start_r + (r * spacing) + (i * calcIncrement(spacing, fn))) * sin(i * calcAngle(fn));
function circ (d) = PI * d;
function calcFacetSize (end_d, fn) = circ( end_d ) / fn;
//function calcSteps(rotations, fn) = fn * rotations;
function calcAngle (fn) = 360 / fn;
function calcFn(start_d, start_fn, end_d, spacing, r) = start_fn +
( ((circ(calcR(start_d, spacing, r) * 2) - circ(start_d) )
/ (circ(end_d) - circ(start_d))) * ($fn - start_fn));
function calcR(start_d, spacing, r) = (start_d / 2) + (spacing * r);
function calcIncrement(spacing, fn) = spacing / fn;
/**
* spiral_7 - Combination of spiral_3 and spiral_4 that doesn't sacrifice
* performance. Hits an overflow when $fn is higher than 245 which creates
* 8418 vectors at 60 rotations. This is an edge case, only appearing in OpenSCAD
* 2019.05 (and maybe earlier), but should be explored.
**/
module spiral (rotations = 40, start_d = 48, spacing = 2.075, bottom = -7.1, fn) {
//bottom = -7.1;
w = 1.4;
top_w = .8;
top_offset = (w - top_w);
h = 2.2;
facetProfile = [
[w, -bottom],
[0, -bottom],
[0, 0],
[top_offset, -h],
[w, -h],
[w, 0]
];
end_d = start_d + (spacing * 2 * rotations);
end_r = end_d / 2;
start_r = start_d / 2;
facetSize = calcFacetSize(end_d, fn);
start_fn = round(circ(start_d) / facetSize);
spiralPath = [ for (r = [0 : rotations - 1]) for (i = [0 : round(calcFn(start_d, start_fn, end_d, spacing, r )) - 1 ])
[
X(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i),
Y(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i),
0]
];
path_extrude(exShape=facetProfile, exPath=spiralPath);
}
module spiral_reinforcement ( start_d = 48, spacing = 2.075, bottom = -2, fn) {
rotations = 1;
w = 1;
top_w = .8;
top_offset = (w - top_w);
h = 2.2;
facetProfile = [
[w, -bottom],
[0, -bottom],
[0, 0],
[0, -h],
[w, -h],
[w, 0]
];
end_d = start_d + (spacing * 2 * rotations);
end_r = end_d / 2;
start_r = start_d / 2;
facetSize = calcFacetSize(end_d, fn);
start_fn = round(circ(start_d) / facetSize);
spiralPath = [ for (r = [0 : rotations - 1]) for (i = [0 : round(calcFn(start_d, start_fn, end_d, spacing, r )) - 1 ])
[
X(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i),
Y(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i),
0]
];
path_extrude(exShape=facetProfile, exPath=spiralPath);
}
/**
* Core (center of the reel)
**/
module gnal_spiral_core () {
$fn = 360;
core_center_h = 4.2 + 3;;
core_bottom_outer_d = 53;
core_bottom_outer_void_d = 44;
core_bottom_outer_h = 4.2;
core_d = 29.5;
core_h = 8.5;
core_bottom_d = 26;
core_bottom_h = 4.2;
top_z_offset = (core_h / 2) - (core_center_h / 2);
core_void_outer_d = 20.5;
core_void_inner_d = 14.5;
core_void_h = 11.5;
arms_outer_d = 48;
arms_inner_d = 48 - 7;
void_d = 18;
film_void = 0.6;
difference () {
union() {
//center
translate([0, 0, -core_center_h / 2]) {
cylinder(r = (core_bottom_outer_d - 1) / 2, h = core_center_h, center = true);
}
//top
translate([0, 0, top_z_offset]) {
cylinder(r = core_d / 2, h = core_h + core_center_h, center = true);
}
}
cylinder(r = void_d / 2, h = 30, center = true);
translate([0, 0, -7.2]) spiral_insert_void();
}
//arms
difference () {
union () {
translate([0, 0, top_z_offset]) difference() {
//adjusted arm (shorter)
intersection () {
cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
translate([1, 0, 0]) cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
}
intersection () {
cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
translate([1, 0, 0]) cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
}
translate([0, arms_outer_d / 2, 0]) cube([arms_outer_d, arms_outer_d, arms_outer_d], center = true);
}
//rounded arm end
translate([(arms_outer_d + arms_inner_d) / 4, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
//adjusted arm
translate([-((arms_outer_d + arms_inner_d) / 4) + 1, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
difference () {
rotate([0, 0, -120]) translate([13.75, 0, top_z_offset]) cube([16, 20, core_h + core_center_h], center = true);
//remove piece from adjusted arm
translate([-19, -14, 0]) rotate([0, 0, 10]) cube([4, 4, 30], center = true);
//remove piece from non-adjusted arm
rotate([0, 0, 45]) translate([-19, -14, 0]) rotate([0, 0, -10]) cube([4, 4, 30], center = true);
rotate([0, 0, -120 - 37]) translate([18, 0, top_z_offset]) {
cylinder(r = 6.8 / 2, h = 30, center = true);
translate([-4, -2, 0]) cube([4, 4, 30], center = true);
}
rotate([0, 0, -120 + 37]) translate([18, 0, top_z_offset]) {
cylinder(r = 6.8 / 2, h = 30, center = true);
translate([-4, 2, 0]) cube([4, 4, 30], center = true);
}
}
}
//film void (notches)
rotate([0, 0, -120]) {
translate([20, -5, 0]) {
rotate([0, 0, 45]) {
cube([20, film_void, 30], center = true);
}
}
}
rotate([0, 0, -120]) {
translate([20, 5, 0]) {
rotate([0, 0, -45]) {
cube([20, film_void, 30], center = true);
}
}
}
//flatten piece
rotate([0, 0, -120]) translate([25, 0, 0]) difference () {
cylinder(r = 8 / 2, h = 30, center = true);
translate([-6.9, 0, 0]) cube([8, 8, 30], center = true);
}
cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true);
rotate([0, 0, -120]) translate([20, 0, -1.5]) rotate([0, 0, 45]) cube([20, 20, 3.01], center = true);
cylinder(r = void_d / 2, h = 30, center = true);
translate([0, 0, -7.2]) spiral_insert_void();
}
}
module spiral_insert_void () {
intersection () {
rotate([0, 45, 0]) cube([3, INSERT_D + 2, 3], center = true);
cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true);
}
intersection () {
rotate([0, 45, 90]) cube([3, INSERT_D + 2, 3], center = true);
cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true);
}
}
module gnal_spiral_bottom_insert_s8 () {
$fn = 160;
OD = 10.5 + .3;
void_d = 18 - .3;
H = 17;
D2 = INSERT_D;
translate([0, 0, 0]) difference () {
union () {
cylinder(r = void_d / 2, h = H, center = true);
//skirt
translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true);
//notches
translate([0, 0, -((H - 2.5) / 2) - .1]) {
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
rotate([0, 0, 90]) difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
}
}
translate([0, 0, -LEN / 2]) {
if (DEBUG) {
cylinder(r = OD / 2, h = LEN);
} else {
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN);
}
}
}
}
module gnal_spiral_bottom_insert_16 () {
$fn = 160;
OD = 10.5 + .3;
void_d = 18 - .3;
H = 17 + 8;
D2 = INSERT_D;
RIDGES = 8;
RIDGE_D = 3;
translate([0, 0, 0]) difference () {
union () {
cylinder(r = void_d / 2, h = H, center = true);
//skirt
translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true);
//notches
translate([0, 0, -((H - 2.5) / 2) - .1]) {
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
rotate([0, 0, 90]) difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
}
}
translate([0, 0, -(H / 2) - 2]) {
if (DEBUG) {
cylinder(r = OD / 2, h = LEN + 8);
} else {
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN + 8);
}
}
translate([0, 0, 8.5]) {
for (i = [0: RIDGES - 1]) {
rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8.1, center = true);
}
}
}
}
/**
* Comment to preserve my sanity when developing: This single-spiral
* insert is the same height as the s8 insert but has a different
* diameter void fo the screw to prevent mismatching of spindle screws
* designed for different purposes.
**/
module gnal_spiral_bottom_insert_single () {
$fn = 160;
void_d = 18 - .3;
H = 17;
D2 = INSERT_D;
translate([0, 0, 0]) difference () {
union () {
cylinder(r = void_d / 2, h = H, center = true);
//skirt
translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true);
//notches
translate([0, 0, -((H - 2.5) / 2) - .1]) {
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
rotate([0, 0, 90]) difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
}
}
translate([0, 0, -LEN / 2]) {
if (DEBUG) {
cylinder(r = SINGLE_THREAD_D / 2, h = LEN);
} else {
metric_thread (diameter=SINGLE_THREAD_D, pitch=PITCH, thread_size = THREAD, length = LEN);
}
}
}
}
/**
* Spacers
**/
module spacer_ridges () {
ridges = 16;
for (i = [0 : ridges]) {
rotate([0, 0, i * (360 / ridges)]) translate([13.5, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60);
}
}
module spacer_ridges_loose () {
ridges = 16;
intersection () {
union () {
for (i = [0 : ridges]) {
rotate([0, 0, i * (360 / ridges)]) translate([13.7, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60);
}
}
cylinder(r = 13.7, h = 12, center = true);
}
}
module spacer_outer_ridges () {
ridges = 24;
H = 6.5;
difference () {
union () {
for (i = [0 : ridges]) {
rotate([0, 0, i * (360 / ridges)]) translate([14.6, 0, -4.75]) cylinder(r = 1.25, h = 8, $fn = 30);
}
}
translate([0, 0, -4.1]) difference () {
cylinder(r = 33 / 2, h = 4, center = true, $fn = 100);
cylinder(r2 = 33 / 2, r1 = 27.75 / 2, h = 4.1, center = true, $fn = 100);
}
}
}
module gnal_spacer_solid () {
core_d = 29.5;
core_bottom_d = 26.2 + .2;
void_d = 18;
h = 8;
RIDGES = 8;
RIDGE_D = 3;
translate([0, 0, 0]) difference () {
union () {
difference () {
cylinder(r = core_d / 2, h = h, center = true, $fn = 200);
}
translate([0, 0, -.75]) rotate([0, 180, 0]) spacer_outer_ridges();
}
}
}
/**
* This spacer attaches to the top piece when it is used
* for Super8 film.
**/
module gnal_spacer () {
add = 3.25;
core_d = 29.5;
core_bottom_d = 26.2 + .2;
void_d = 22.5;
h = 8 + add;
translate([0, 0, (add / 2) - 1]) difference () {
union () {
difference () {
cylinder(r = core_d / 2, h = h, center = true, $fn = 200);
translate([0, 0, 8]) cylinder(r = core_bottom_d / 2, h = h, center = true, $fn = 200);
cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200);
}
translate([0, 0, 0]) spacer_ridges_loose();
spacer_outer_ridges();
}
//trim top
translate([0, 0, h - 0.1]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200);
//trim bottom
translate([0, 0, -h + 0.9]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200);
}
}
module gnal_spacer_16 () {
core_d = 29.5;
core_bottom_d = 26.2 + .2;
void_d = 18.3;
h = 8;
RIDGES = 8;
RIDGE_D = 3;
difference () {
gnal_spacer_solid();
cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200);
}
translate([0, 0, 0]) {
for (i = [0: RIDGES - 1]) {
rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8, center = true);
}
}
}
/**
* Spindles
**/
module gnal_spindle_base ( ) {
D = 8.45 * 2;
H = 20;
union() {
translate([0, 0, -15]) {
cylinder(r = D / 2, h = H, center = true, $fn = FINE);
}
}
}
module gnal_spindle_bottom_base ( HEX = false) {
//for grip
BUMP = 2; //diameter
BUMPS = 6;
TOP_D = 19;
TOP_H = 9.5;
TOP_OFFSET = -24.5;
union() {
gnal_spindle_base();
//hex version
if (HEX) {
translate([0, 0, TOP_OFFSET]) {
cylinder(r = 11.1, h = TOP_H, center = true, $fn = 6);
}
} else {
translate([0, 0, TOP_OFFSET]) {
cylinder(r = TOP_D / 2, h = TOP_H, center = true, $fn = FINE);
}
}
for (i = [0 : BUMPS]) {
rotate([0, 0, (360 / BUMPS) * i]) {
translate([0, 8.9, TOP_OFFSET]) {
cylinder(r = BUMP, h = TOP_H, center = true, $fn = 60);
}
}
}
}
}
module outer_screw (LEN) {
OD = 10;
PITCH = 1.5;
THREAD = 1.6;
difference () {
translate([0, 0, -7.1]) {
if (DEBUG) {
cylinder(r = OD / 2, h = LEN);
} else {
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN);
}
}
//bevel top of screw
translate([0, 0, LEN - 8]) difference() {
cylinder(r = 8, h = 3, center = true, $fn = FINE);
cylinder(r1 = 6, r2 = 3, h = 3.01, center = true, $fn = FINE);
}
}
}
module gnal_spindle_bottom (ALT = false, HEX = false) {
OD = 13.6 + .5;
PITCH = 1.5;
THREAD = 1.6;
IN_LEN = 21;
LEN = 17.1;
ALT_LEN = 27.1;
difference () {
gnal_spindle_bottom_base(HEX);
//inner screw negative
translate([0, 0, -30]) union() {
if (DEBUG) {
cylinder(r = OD / 2, h = IN_LEN);
} else {
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN);
}
translate([0, 0, 0.2]) {
if (DEBUG) {
cylinder(r = OD / 2, h = IN_LEN);
} else {
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN);
}
}
}
}
difference () {
//outer screw
if (ALT) {
outer_screw(ALT_LEN);
} else {
outer_screw(LEN);
}
}
}
module number_one () {
rotate([0, 45, 0]) cube([1, 6, 1], center = true);
translate([0, 6 / 2, 0]) rotate([45, 0, 0]) cube([2, 1, 1], center = true);
translate([0, -6 / 2, 0]) rotate([45, 0, 0]) cube([2, 1, 1], center = true);
}
module gnal_spindle_top () {
D = 50;
THICKNESS = 2.5;
H = 19.5;
ROUND = 8;
HANDLE_D = 13.25;
HANDLE_BASE = 16;
HANDLE_TOP = 13;
HANDLE_H = 54.5;
NOTCHES = 17;
NOTCH = 1.5;
FINE = 200;
difference () {
//cup
translate([0, 0, ROUND - 2]) minkowski () {
cylinder(r = (D / 2) - ROUND, h = (H * 2) - ROUND, center = true, $fn = FINE);
sphere(r = ROUND, $fn = FINE);
}
translate([0, 0, ROUND - 2 + THICKNESS]) minkowski () {
cylinder(r = (D / 2) - THICKNESS - ROUND, h = (H * 2) - ROUND, center = true, $fn = 200);
sphere(r = ROUND, $fn = FINE);
}
//hollow out cup
translate([0, 0, H + ROUND - 4 - 3]) {
cylinder(r = (D / 2) + 1, h = H * 2, center = true);
}
//inner cup bevel
translate([0, 0, (H / 2) - ROUND - 1]) {
cylinder(r1 = (D / 2) - 2.5, r2 = (D / 2) - 2.5 + 1, h = 1, center = true, $fn = FINE);
}
//outer cup bevel
translate([0, 0, (H / 2) - ROUND - 1]) {
difference () {
cylinder(r = (D / 2) + .25, h = 1, center = true, $fn = FINE);
cylinder(r2 = (D / 2) - .8, r1 = (D / 2) - .8 + 1, h = 1, center = true, $fn = FINE);
}
}
//hole in cup
translate([21, 0, -10]) cylinder(r = 3 / 2, h = 40, center = true, $fn = 40);
}
//reference cylinder
//translate([0, 0, -6.6]) color("red") cylinder(r = 50 / 2, h = 19.57, center = true);
//handle
translate([0, 0, -15]) {
difference() {
cylinder(r1 = HANDLE_BASE / 2, r2 = HANDLE_TOP / 2, h = HANDLE_H, $fn = FINE);
//text
translate([3 / 2, 0, 15 + 39.75]) number_one();
translate([-3 / 2, 0, 15 + 39.75]) number_one();
//ring negative
translate([0, 0, 31 + 14.5]) {
difference () {
cylinder(r = HANDLE_D / 2 + 2, h = 20, center = true);
cylinder(r = HANDLE_D / 2 - .5, h = 20 + 1, center = true);
}
}
//handle notches
for(i = [0 : NOTCHES]) {
rotate([0, 0, i * (360 / NOTCHES)]) {
translate([0, HANDLE_D / 2 - .5, 31 + 14.5]) {
rotate([0.75, 0, 0]) rotate([0, 0, 45]) {
Right_Angled_Triangle(a = NOTCH, b = NOTCH, height = 20, centerXYZ=[true, true, true]);
}
}
}
}
//bevel handle at top
translate([0, 0, 54.01]) {
difference () {
cylinder(r = 13 / 2, h = 1, center = true);
cylinder(r1 = 12.5 / 2, r2 = 11.5 / 2, h = 1.01, center = true);
}
}
}
}
//attach handle with pyramid cylinder
translate ([0, 0, -13.7]) {
cylinder(r1 = 16 / 2 + 2, r2 = 16 / 2 - .1, h = 3, center = true, $fn = FINE);
}
//plate under cup
translate([0, 0, -17.75]) {
cylinder(r = 31.5 / 2, h = 1, center = true, $fn = FINE);
}
//screw
translate([0, 0, -37.5]) {
if (DEBUG) {
cylinder(r = 13.6 / 2, h = 21);
} else {
metric_thread (diameter=13.6, pitch = PITCH, thread_size = THREAD, length = 21);
}
}
//cylinder plug
translate([0, 0, -37.5 + (21 / 2) - 1]) {
cylinder(r = 12 / 2, h = 21, center = true, $fn = FINE);
}
}
module gnal_spindle_single () {
D = 50;
THICKNESS = 2.5;
H = 19.5;
ROUND = 8;
HANDLE_D = 13.25;
HANDLE_BASE = 16;
HANDLE_TOP = 13;
HANDLE_H = 54.5;
NOTCHES = 17;
NOTCH = 1.5;
FINE = 200;
SINGLE_INSERT = 11;
difference () {
//cup
translate([0, 0, ROUND - 2]) minkowski () {
cylinder(r = (D / 2) - ROUND, h = (H * 2) - ROUND, center = true, $fn = FINE);
sphere(r = ROUND, $fn = FINE);
}
translate([0, 0, ROUND - 2 + THICKNESS]) minkowski () {
cylinder(r = (D / 2) - THICKNESS - ROUND, h = (H * 2) - ROUND, center = true, $fn = 200);
sphere(r = ROUND, $fn = FINE);
}
//hollow out cup
translate([0, 0, H + ROUND - 4 - 3]) {
cylinder(r = (D / 2) + 1, h = H * 2, center = true);
}
//inner cup bevel
translate([0, 0, (H / 2) - ROUND - 1]) {
cylinder(r1 = (D / 2) - 2.5, r2 = (D / 2) - 2.5 + 1, h = 1, center = true, $fn = FINE);
}
//outer cup bevel
translate([0, 0, (H / 2) - ROUND - 1]) {
difference () {
cylinder(r = (D / 2) + .25, h = 1, center = true, $fn = FINE);
cylinder(r2 = (D / 2) - .8, r1 = (D / 2) - .8 + 1, h = 1, center = true, $fn = FINE);
}
}
//hole in cup
translate([21, 0, -10]) cylinder(r = 3 / 2, h = 40, center = true, $fn = 40);
}
//reference cylinder
//translate([0, 0, -6.6]) color("red") cylinder(r = 50 / 2, h = 19.57, center = true);
//handle
translate([0, 0, -15]) {
difference() {
cylinder(r1 = HANDLE_BASE / 2, r2 = HANDLE_TOP / 2, h = HANDLE_H, $fn = FINE);
//text
translate([0, 0, 15 + 39.75]) number_one();
//ring negative
translate([0, 0, 31 + 14.5]) {
difference () {
cylinder(r = HANDLE_D / 2 + 2, h = 20, center = true);
cylinder(r = HANDLE_D / 2 - .5, h = 20 + 1, center = true);
}
}
//handle notches
for(i = [0 : NOTCHES]) {
rotate([0, 0, i * (360 / NOTCHES)]) {
translate([0, HANDLE_D / 2 - .5, 31 + 14.5]) {
rotate([0.75, 0, 0]) rotate([0, 0, 45]) {
Right_Angled_Triangle(a = NOTCH, b = NOTCH, height = 20, centerXYZ=[true, true, true]);
}
}
}
}
//bevel handle at top
translate([0, 0, 54.01]) {
difference () {
cylinder(r = 13 / 2, h = 1, center = true);
cylinder(r1 = 12.5 / 2, r2 = 11.5 / 2, h = 1.01, center = true);
}
}
}
}
//attach handle with pyramid cylinder
translate ([0, 0, -13.7]) {
cylinder(r1 = 16 / 2 + 2, r2 = 16 / 2 - .1, h = 3, center = true, $fn = FINE);
}
//plate under cup
translate([0, 0, -17.75]) {
cylinder(r = 31.5 / 2, h = 1, center = true, $fn = FINE);
}
//insert for single layer
translate ([0, 0, -24.25]) {
cylinder(r = 22 / 2, h = 14, center = true, $fn = FINE);
}
//screw
translate([0, 0, -37.5 - SINGLE_INSERT]) {
if (DEBUG) {
cylinder(r = SINGLE_THREAD_D / 2, h = 21);
} else {
metric_thread (diameter=SINGLE_THREAD_D, pitch = PITCH, thread_size = THREAD, length = 21);
}
}
//cylinder plug
translate([0, 0, -37.5 - SINGLE_INSERT + (21 / 2) - 1]) {
cylinder(r = 10 / 2, h = 21, center = true, $fn = FINE);
}
}
module gnal_stacking_spindle () {
OD = 10.5 + .3;
IN_LEN = 21;
LEN = 17.1;
ALT_LEN = 27.1;
difference () {
union () {
gnal_spindle_base();
translate([0, 0, -23.75]) gnal_spacer_solid();
}
//inner screw negative
translate([0, 0, -30]) union() {
if (DEBUG) {
cylinder(r = OD / 2, h = IN_LEN);
} else {
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN);
}
translate([0, 0, 0.2]) {
if (DEBUG) {
cylinder(r = OD / 2, h = IN_LEN);
} else {
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN);
}
}
}
}
difference () {
outer_screw(LEN - 2);
}
}