GNAL/libraries/gnal_v2.scad

454 lines
16 KiB
OpenSCAD
Raw Normal View History

//GNAL Shared Library
include <./path_extrude.scad>;
include <./threads.scad>;
/**
* THREADS
* TOP (large screw)
* metric_thread (diameter=13.6, pitch=1.5 ,thread_size = 1.6, length = 21);
* TOP VOID
* metric_thread (diameter=13.6 + .5, pitch=1.5, thread_size = 1.6, length = 21);
* + clone translated along Z by 0.2mm
* BOTTOM (small screw)
* metric_thread (diameter=10, pitch=1.5, thread_size = 1.6, length=LEN);
*/
OD = 10 + .5;
PITCH = 1.5;
THREAD = 1.6;
LEN = 21;
INSERT_D = 26;
/**
* Core (center of the reel)
**/
module gnal_spiral_core () {
$fn = 360;
core_center_h = 4.2 + 3;;
core_bottom_outer_d = 53;
core_bottom_outer_void_d = 44;
core_bottom_outer_h = 4.2;
core_d = 29.5;
core_h = 8.5;
core_bottom_d = 26;
core_bottom_h = 4.2;
top_z_offset = (core_h / 2) - (core_center_h / 2);
core_void_outer_d = 20.5;
core_void_inner_d = 14.5;
core_void_h = 11.5;
arms_outer_d = 48;
arms_inner_d = 48 - 7;
void_d = 18;
film_void = 0.6;
difference () {
union() {
//center
translate([0, 0, -core_center_h / 2]) {
cylinder(r = (core_bottom_outer_d - 1) / 2, h = core_center_h, center = true);
}
//top
translate([0, 0, top_z_offset]) {
cylinder(r = core_d / 2, h = core_h + core_center_h, center = true);
}
}
cylinder(r = void_d / 2, h = 30, center = true);
translate([0, 0, -7.2]) spiral_bottom_insert_void();
}
//arms
difference () {
union () {
translate([0, 0, top_z_offset]) difference() {
//adjusted arm (shorter)
intersection () {
cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
translate([1, 0, 0]) cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
}
intersection () {
cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
translate([1, 0, 0]) cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
}
translate([0, arms_outer_d / 2, 0]) cube([arms_outer_d, arms_outer_d, arms_outer_d], center = true);
}
//rounded arm end
translate([(arms_outer_d + arms_inner_d) / 4, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
//adjusted arm
translate([-((arms_outer_d + arms_inner_d) / 4) + 1, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
difference () {
rotate([0, 0, -120]) translate([13.75, 0, top_z_offset]) cube([16, 20, core_h + core_center_h], center = true);
//remove piece from adjusted arm
translate([-19, -14, 0]) rotate([0, 0, 10]) cube([4, 4, 30], center = true);
//remove piece from non-adjusted arm
rotate([0, 0, 45]) translate([-19, -14, 0]) rotate([0, 0, -10]) cube([4, 4, 30], center = true);
rotate([0, 0, -120 - 37]) translate([18, 0, top_z_offset]) {
cylinder(r = 6.8 / 2, h = 30, center = true);
translate([-4, -2, 0]) cube([4, 4, 30], center = true);
}
rotate([0, 0, -120 + 37]) translate([18, 0, top_z_offset]) {
cylinder(r = 6.8 / 2, h = 30, center = true);
translate([-4, 2, 0]) cube([4, 4, 30], center = true);
}
}
}
//film void (notches)
rotate([0, 0, -120]) {
translate([20, -5, 0]) {
rotate([0, 0, 45]) {
cube([20, film_void, 30], center = true);
}
}
}
rotate([0, 0, -120]) {
translate([20, 5, 0]) {
rotate([0, 0, -45]) {
cube([20, film_void, 30], center = true);
}
}
}
//flatten piece
rotate([0, 0, -120]) translate([25, 0, 0]) difference () {
cylinder(r = 8 / 2, h = 30, center = true);
translate([-6.9, 0, 0]) cube([8, 8, 30], center = true);
}
cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true);
rotate([0, 0, -120]) translate([20, 0, -1.5]) rotate([0, 0, 45]) cube([20, 20, 3.01], center = true);
cylinder(r = void_d / 2, h = 30, center = true);
translate([0, 0, -7.2]) spiral_bottom_insert_void();
}
}
module spiral_bottom_insert_void () {
intersection () {
rotate([0, 45, 0]) cube([3, INSERT_D + 2, 3], center = true);
cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true);
}
intersection () {
rotate([0, 45, 90]) cube([3, INSERT_D + 2, 3], center = true);
cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true);
}
}
module gnal_spiral_bottom_insert_s8 () {
$fn = 160;
void_d = 18 - .3;
H = 17;
D2 = INSERT_D;
translate([0, 0, 0]) difference () {
union () {
cylinder(r = void_d / 2, h = H, center = true);
//skirt
translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true);
//notches
translate([0, 0, -((H - 2.5) / 2) - .1]) {
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
rotate([0, 0, 90]) difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
}
}
translate([0, 0, -LEN / 2]) metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN);
}
}
module gnal_spiral_bottom_insert_16 () {
$fn = 160;
void_d = 18 - .3;
H = 17 + 8;
D2 = INSERT_D;
RIDGES = 8;
RIDGE_D = 3;
translate([0, 0, 0]) difference () {
union () {
cylinder(r = void_d / 2, h = H, center = true);
//skirt
translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true);
//notches
translate([0, 0, -((H - 2.5) / 2) - .1]) {
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
intersection () {
cylinder(r = D2 / 2, h = 6, center = true);
rotate([0, 0, 90]) difference () {
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
}
}
}
}
translate([0, 0, -(H / 2) - 2]) metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN + 8);
translate([0, 0, 8.5]) {
for (i = [0: RIDGES - 1]) {
rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8.1, center = true);
}
}
}
}
/**
* Spacers
**/
module spacer_ridges () {
ridges = 16;
for (i = [0 : ridges]) {
rotate([0, 0, i * (360 / ridges)]) translate([13.5, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60);
}
}
module spacer_ridges_loose () {
ridges = 16;
intersection () {
union () {
for (i = [0 : ridges]) {
rotate([0, 0, i * (360 / ridges)]) translate([13.7, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60);
}
}
cylinder(r = 13.7, h = 12, center = true);
}
}
module spacer_outer_ridges () {
ridges = 24;
H = 6.5;
difference () {
union () {
for (i = [0 : ridges]) {
rotate([0, 0, i * (360 / ridges)]) translate([14.6, 0, -4.75]) cylinder(r = 1.25, h = 8, $fn = 30);
}
}
translate([0, 0, -4.1]) difference () {
cylinder(r = 33 / 2, h = 4, center = true, $fn = 100);
cylinder(r2 = 33 / 2, r1 = 27.75 / 2, h = 4.1, center = true, $fn = 100);
}
}
}
module gnal_spacer () {
add = 3.25;
core_d = 29.5;
core_bottom_d = 26.2 + .2;
void_d = 22.5;
h = 8 + add;
translate([0, 0, (add / 2) - 1]) difference () {
union () {
difference () {
cylinder(r = core_d / 2, h = h, center = true, $fn = 200);
translate([0, 0, 8]) cylinder(r = core_bottom_d / 2, h = h, center = true, $fn = 200);
cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200);
}
translate([0, 0, 0]) spacer_ridges_loose();
spacer_outer_ridges();
}
//trim top
translate([0, 0, h - 0.1]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200);
//trim bottom
translate([0, 0, -h + 0.9]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200);
//finger grips
//translate([0, 24, 0]) rotate([-6, 0, 0]) cylinder(r = 10, h = 6, center = true, $fn = 100);
//translate([0, -24, 0]) rotate([6, 0, 0]) cylinder(r = 10, h = 6, center = true, $fn = 100);
}
}
module gnal_spacer_16 () {
core_d = 29.5;
core_bottom_d = 26.2 + .2;
void_d = 18;
h = 8;
RIDGES = 8;
RIDGE_D = 3;
translate([0, 0, 0]) difference () {
union () {
difference () {
cylinder(r = core_d / 2, h = h, center = true, $fn = 200);
cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200);
}
translate([0, 0, -.75]) rotate([0, 180, 0]) spacer_outer_ridges();
}
}
translate([0, 0, 0]) {
for (i = [0: RIDGES - 1]) {
rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8, center = true);
}
}
}
/**
* Spokes
**/
module triangle_void () {
length = (81 / 2) - 9;
width = 12;
height = 4.5 + 2.7;
ANGLE_A = 34.8;
ANGLE_B = 180 / SPOKE_COUNT;
difference () {
translate([-1, 0, 0]) cube([length, width, height], center = true);
translate([0, 10.3, 0]) rotate([0, 0, ANGLE_B]) cube([length * 2, width, height + 1], center = true);
translate([0, -10.3, 0]) rotate([0, 0, -ANGLE_B]) cube([length * 2, width, height + 1], center = true);
translate([0, 10.3, -.7]) rotate([ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true);
translate([0, -10.3, -.7]) rotate([-ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true);
}
}
module triangle_void_2 () {
length = 43 - 8;
width = 12;
height = 4.5 + 2.7;
ANGLE_A = 34.8;
ANGLE_B = 90 / SPOKE_COUNT;
angle_w = 10.2;
difference () {
translate([-1, 0, 0]) cube([length, width, height], center = true);
translate([0, angle_w, 0]) rotate([0, 0, ANGLE_B]) cube([length *2, width, height * 10], center = true);
translate([0, -angle_w, 0]) rotate([0, 0, -ANGLE_B]) cube([length *2, width, height * 10], center = true);
translate([0, angle_w, -.7]) rotate([ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true);
translate([0, -angle_w, -.7]) rotate([-ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true);
}
}
module triangle_void_3 () {
length = 32;
width = 10;
height = 4.5 + 2.7;
ANGLE_A = 31;
ANGLE_B = 45 / SPOKE_COUNT;
angle_w = 7.8;
difference () {
translate([-1, 0, 0]) cube([length, width, height], center = true);
translate([0, angle_w, 0]) rotate([0, 0, ANGLE_B]) cube([length *2, width, height * 10], center = true);
translate([0, -angle_w, 0]) rotate([0, 0, -ANGLE_B]) cube([length *2, width, height * 10], center = true);
translate([0, angle_w, -.7]) rotate([ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true);
translate([0, -angle_w, -.7]) rotate([-ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true);
}
}
/**
* Spiral Generation Modules
*/
module spirals_old (count = 40, start_d = 48, spacing = 2) {
facet_size = 30;
bottom = 1.2;
top = .3;
top_offset = (bottom - top);
h = 2.2;
od = start_d + (spacing * 2 * count);
echo("SPIRAL LENGTH", PI * count * (od + start_d + 1) / 2);
echo("OUTER D", od);
facetProfile = [[0, 0], [top_offset, -h], [bottom, -h], [bottom, 0]];
union () {
for (s = [0 : count - 1]) {
d = start_d + (s * spacing * 2);
c = PI * pow(d / 2, 2);
$fn = ceil( c / facet_size );
angle_i = 360 / $fn;
increment = spacing / $fn;
spiralPath = [ for(t = [0 : $fn + 1]) [((d / 2) + (t * increment)) * cos(t * angle_i), ((d / 2) + (t * increment)) * sin(t * angle_i), 0] ];
path_extrude(exShape=facetProfile, exPath=spiralPath);
}
}
}
/**
* InwardSpiral code provided by Les Smith
*
* https://gist.github.com/sixteenmillimeter/839c16d39d26d04154f52b3f3ee6ee78
**/
module ShapeToExtrude () {
bottom = -7.1;
w = 1.2;
top_w = .4;
top_offset = (w - top_w);
h = 2.2;
// Build in +x space. The outside edge of this shape must follow the extrusion path, or there will be open seams..
polygon ( points= [
[w, bottom],
[0, bottom],
[0, 0],
[top_offset, h],
[w, h],
[w, 0]
]);
}
module InwardSpiral (StepSize, Steps, StartRadius, Pitch, ShapeX) {
for (i=[0 : Steps - 1]) {
// This could be made more computationally efficient
// by collapsing intermediate values and by doing only
// essential calculations inside the loop, but for now
// let's just leave it easy to read.
ThisTheta = StepSize * i;
NextTheta = StepSize * (i + 1);
ThisRadius = StartRadius - i * (Pitch * (StepSize / 360));
// Spiral step approximated by arc of radius ThisRadius,
// passing through the start and end points calculated here.
NextRadius = StartRadius - (i + 1) * (Pitch * (StepSize / 360));
ThisX = ThisRadius * sin(ThisTheta);
ThisY = ThisRadius * cos(ThisTheta);
NextX = NextRadius * sin(NextTheta);
NextY = NextRadius * cos(NextTheta);
DeltaX = NextX - ThisX;
DeltaY = NextY - ThisY;
SlopeToNext = DeltaY / DeltaX;
BisecSlope = -1 / SlopeToNext;
ThisXYToBisector = sqrt(DeltaX * DeltaX + DeltaY * DeltaY) / 2;
BisectX = ThisX + (DeltaX / 2);
BisectY = ThisY + (DeltaY / 2);
BisectToCentre = sqrt(pow(ThisRadius, 2) - pow(ThisXYToBisector, 2));
AbsXComponent = sqrt(pow(BisectToCentre, 2) / ( 1 + pow(BisecSlope, 2)));
XComponent = NextY < ThisY ? AbsXComponent: -AbsXComponent;
YComponent = XComponent * BisecSlope;
CentreX = BisectX - XComponent;
CentreY = BisectY - YComponent;
ExtrudeAngle = -2 * acos(BisectToCentre / ThisRadius);
ArcOrientation = NextY < ThisY ? atan(BisecSlope) - (ExtrudeAngle / 2) : -180 + atan(BisecSlope) -(ExtrudeAngle / 2);
translate([CentreX, CentreY, 0]) {
rotate ([0, 0, ArcOrientation]) {
rotate_extrude (angle=ExtrudeAngle, $fn=300) translate ([ThisRadius - ShapeX, 0, 0])ShapeToExtrude();
}
}
}
}