Initialize project
This commit is contained in:
commit
a5d640e5b8
|
@ -0,0 +1,215 @@
|
|||
/*
|
||||
Triangles.scad
|
||||
Author: Tim Koopman
|
||||
https://github.com/tkoopman/Delta-Diamond/blob/master/OpenSCAD/Triangles.scad
|
||||
|
||||
angleCA
|
||||
/|\
|
||||
a / H \ c
|
||||
/ | \
|
||||
angleAB ------- angleBC
|
||||
b
|
||||
|
||||
Standard Parameters
|
||||
center: true/false
|
||||
If true same as centerXYZ = [true, true, true]
|
||||
|
||||
centerXYZ: Vector of 3 true/false values [CenterX, CenterY, CenterZ]
|
||||
center must be left undef
|
||||
|
||||
height: The 3D height of the Triangle. Ignored if heights defined
|
||||
|
||||
heights: Vector of 3 height values heights @ [angleAB, angleBC, angleCA]
|
||||
If CenterZ is true each height will be centered individually, this means
|
||||
the shape will be different depending on CenterZ. Most times you will want
|
||||
CenterZ to be true to get the shape most people want.
|
||||
*/
|
||||
|
||||
/*
|
||||
Triangle
|
||||
a: Length of side a
|
||||
b: Length of side b
|
||||
angle: angle at point angleAB
|
||||
*/
|
||||
module Triangle(
|
||||
a, b, angle, height=1, heights=undef,
|
||||
center=undef, centerXYZ=[false,false,false])
|
||||
{
|
||||
// Calculate Heights at each point
|
||||
heightAB = ((heights==undef) ? height : heights[0])/2;
|
||||
heightBC = ((heights==undef) ? height : heights[1])/2;
|
||||
heightCA = ((heights==undef) ? height : heights[2])/2;
|
||||
centerZ = (center || (center==undef && centerXYZ[2]))?0:max(heightAB,heightBC,heightCA);
|
||||
|
||||
// Calculate Offsets for centering
|
||||
offsetX = (center || (center==undef && centerXYZ[0]))?((cos(angle)*a)+b)/3:0;
|
||||
offsetY = (center || (center==undef && centerXYZ[1]))?(sin(angle)*a)/3:0;
|
||||
|
||||
pointAB1 = [-offsetX,-offsetY, centerZ-heightAB];
|
||||
pointAB2 = [-offsetX,-offsetY, centerZ+heightAB];
|
||||
pointBC1 = [b-offsetX,-offsetY, centerZ-heightBC];
|
||||
pointBC2 = [b-offsetX,-offsetY, centerZ+heightBC];
|
||||
pointCA1 = [(cos(angle)*a)-offsetX,(sin(angle)*a)-offsetY, centerZ-heightCA];
|
||||
pointCA2 = [(cos(angle)*a)-offsetX,(sin(angle)*a)-offsetY, centerZ+heightCA];
|
||||
|
||||
polyhedron(
|
||||
points=[ pointAB1, pointBC1, pointCA1,
|
||||
pointAB2, pointBC2, pointCA2 ],
|
||||
faces=[
|
||||
[0, 1, 2],
|
||||
[3, 5, 4],
|
||||
[0, 3, 1],
|
||||
[1, 3, 4],
|
||||
[1, 4, 2],
|
||||
[2, 4, 5],
|
||||
[2, 5, 0],
|
||||
[0, 5, 3] ] );
|
||||
}
|
||||
|
||||
/*
|
||||
Isosceles Triangle
|
||||
Exactly 2 of the following paramaters must be defined.
|
||||
If all 3 defined H will be ignored.
|
||||
b: length of side b
|
||||
angle: angle at points angleAB & angleBC.
|
||||
*/
|
||||
module Isosceles_Triangle(
|
||||
b, angle, H=undef, height=1, heights=undef,
|
||||
center=undef, centerXYZ=[true, false, false])
|
||||
{
|
||||
valid = (angle!=undef)?((angle < 90) && (b!=undef||H!=undef)) : (b!=undef&&H!=undef);
|
||||
ANGLE = (angle!=undef) ? angle : atan(H / (b/2));
|
||||
a = (b==undef)?(H/sin((180-(angle*2))/2)) :
|
||||
(b / cos(ANGLE))/2;
|
||||
B = (b==undef)? (cos(angle)*a)*2:b;
|
||||
if (valid)
|
||||
{
|
||||
Triangle(a=a, b=B, angle=ANGLE, height=height, heights=heights,
|
||||
center=center, centerXYZ=centerXYZ);
|
||||
} else {
|
||||
echo("Invalid Isosceles_Triangle. Must specify any 2 of b, angle and H, and if angle used angle must be less than 90");
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Right Angled Triangle
|
||||
Create a Right Angled Triangle where the hypotenuse will be calculated.
|
||||
|
||||
|\
|
||||
a| \
|
||||
| \
|
||||
----
|
||||
b
|
||||
a: length of side a
|
||||
b: length of side b
|
||||
*/
|
||||
module Right_Angled_Triangle(
|
||||
a, b, height=1, heights=undef,
|
||||
center=undef, centerXYZ=[false, false, false])
|
||||
{
|
||||
Triangle(a=a, b=b, angle=90, height=height, heights=heights,
|
||||
center=center, centerXYZ=centerXYZ);
|
||||
}
|
||||
|
||||
/*
|
||||
Wedge
|
||||
Is same as Right Angled Triangle with 2 different heights, and rotated.
|
||||
Good for creating support structures.
|
||||
*/
|
||||
module Wedge(a, b, w1, w2)
|
||||
{
|
||||
rotate([90,0,0])
|
||||
Right_Angled_Triangle(a, b, heights=[w1, w2, w1], centerXYZ=[false, false, true]);
|
||||
}
|
||||
|
||||
/*
|
||||
Equilateral Triangle
|
||||
Create a Equilateral Triangle.
|
||||
|
||||
l: Length of all sides (a, b & c)
|
||||
H: Triangle size will be based on the this 2D height
|
||||
When using H, l is ignored.
|
||||
*/
|
||||
module Equilateral_Triangle(
|
||||
l=10, H=undef, height=1, heights=undef,
|
||||
center=undef, centerXYZ=[true,false,false])
|
||||
{
|
||||
L = (H==undef)?l:H/sin(60);
|
||||
Triangle(a=L,b=L,angle=60,height=height, heights=heights,
|
||||
center=center, centerXYZ=centerXYZ);
|
||||
}
|
||||
|
||||
/*
|
||||
Trapezoid
|
||||
Create a Basic Trapezoid (Based on Isosceles_Triangle)
|
||||
|
||||
d
|
||||
/----\
|
||||
/ | \
|
||||
a / H \ c
|
||||
/ | \
|
||||
angle ------------ angle
|
||||
b
|
||||
|
||||
b: Length of side b
|
||||
angle: Angle at points angleAB & angleBC
|
||||
H: The 2D height at which the triangle should be cut to create the trapezoid
|
||||
heights: If vector of size 3 (Standard for triangles) both cd & da will be the same height, if vector have 4 values [ab,bc,cd,da] than each point can have different heights.
|
||||
*/
|
||||
module Trapezoid(
|
||||
b, angle=60, H, height=1, heights=undef,
|
||||
center=undef, centerXYZ=[true,false,false])
|
||||
{
|
||||
validAngle = (angle < 90);
|
||||
adX = H / tan(angle);
|
||||
|
||||
// Calculate Heights at each point
|
||||
heightAB = ((heights==undef) ? height : heights[0])/2;
|
||||
heightBC = ((heights==undef) ? height : heights[1])/2;
|
||||
heightCD = ((heights==undef) ? height : heights[2])/2;
|
||||
heightDA = ((heights==undef) ? height : ((len(heights) > 3)?heights[3]:heights[2]))/2;
|
||||
|
||||
// Centers
|
||||
centerX = (center || (center==undef && centerXYZ[0]))?0:b/2;
|
||||
centerY = (center || (center==undef && centerXYZ[1]))?0:H/2;
|
||||
centerZ = (center || (center==undef && centerXYZ[2]))?0:max(heightAB,heightBC,heightCD,heightDA);
|
||||
|
||||
// Points
|
||||
y = H/2;
|
||||
bx = b/2;
|
||||
dx = (b-(adX*2))/2;
|
||||
|
||||
pointAB1 = [centerX-bx, centerY-y, centerZ-heightAB];
|
||||
pointAB2 = [centerX-bx, centerY-y, centerZ+heightAB];
|
||||
pointBC1 = [centerX+bx, centerY-y, centerZ-heightBC];
|
||||
pointBC2 = [centerX+bx, centerY-y, centerZ+heightBC];
|
||||
pointCD1 = [centerX+dx, centerY+y, centerZ-heightCD];
|
||||
pointCD2 = [centerX+dx, centerY+y, centerZ+heightCD];
|
||||
pointDA1 = [centerX-dx, centerY+y, centerZ-heightDA];
|
||||
pointDA2 = [centerX-dx, centerY+y, centerZ+heightDA];
|
||||
|
||||
validH = (adX < b/2);
|
||||
|
||||
if (validAngle && validH)
|
||||
{
|
||||
polyhedron(
|
||||
points=[ pointAB1, pointBC1, pointCD1, pointDA1,
|
||||
pointAB2, pointBC2, pointCD2, pointDA2 ],
|
||||
triangles=[
|
||||
[0, 1, 2],
|
||||
[0, 2, 3],
|
||||
[4, 6, 5],
|
||||
[4, 7, 6],
|
||||
[0, 4, 1],
|
||||
[1, 4, 5],
|
||||
[1, 5, 2],
|
||||
[2, 5, 6],
|
||||
[2, 6, 3],
|
||||
[3, 6, 7],
|
||||
[3, 7, 0],
|
||||
[0, 7, 4] ] );
|
||||
} else {
|
||||
if (!validAngle) echo("Trapezoid invalid, angle must be less than 90");
|
||||
else echo("Trapezoid invalid, H is larger than triangle");
|
||||
}
|
||||
}
|
|
@ -0,0 +1,827 @@
|
|||
//GNAL v3 Shared Library
|
||||
|
||||
include <./path_extrude.scad>;
|
||||
include <./threads.scad>;
|
||||
include <./Triangles.scad>;
|
||||
|
||||
/**
|
||||
* THREADS
|
||||
* TOP (large screw)
|
||||
* metric_thread (diameter=13.6, pitch=1.5 ,thread_size = 1.6, length = 21);
|
||||
* TOP VOID
|
||||
* metric_thread (diameter=13.6 + .5, pitch=1.5, thread_size = 1.6, length = 21);
|
||||
* + clone translated along Z by 0.2mm
|
||||
* BOTTOM (small screw)
|
||||
* metric_thread (diameter=10, pitch=1.5, thread_size = 1.6, length=LEN);
|
||||
* SINGLE LEVEL (middle screw)
|
||||
*
|
||||
*/
|
||||
|
||||
DEBUG = false;
|
||||
FINE = 200;
|
||||
|
||||
OD = 10 + .5;
|
||||
PITCH = 1.5;
|
||||
THREAD = 1.6;
|
||||
LEN = 21;
|
||||
|
||||
INSERT_D = 26;
|
||||
SINGLE_THREAD_D = 12;
|
||||
|
||||
function X (start_r, spacing, fn, r, i) = (start_r + (r * spacing) + (i * calcIncrement(spacing, fn))) * cos(i * calcAngle(fn));
|
||||
function Y (start_r, spacing, fn, r, i) = (start_r + (r * spacing) + (i * calcIncrement(spacing, fn))) * sin(i * calcAngle(fn));
|
||||
|
||||
function circ (d) = PI * d;
|
||||
function calcFacetSize (end_d, fn) = circ( end_d ) / fn;
|
||||
//function calcSteps(rotations, fn) = fn * rotations;
|
||||
function calcAngle (fn) = 360 / fn;
|
||||
function calcFn(start_d, start_fn, end_d, spacing, r) = start_fn +
|
||||
( ((circ(calcR(start_d, spacing, r) * 2) - circ(start_d) )
|
||||
/ (circ(end_d) - circ(start_d))) * ($fn - start_fn));
|
||||
function calcR(start_d, spacing, r) = (start_d / 2) + (spacing * r);
|
||||
function calcIncrement(spacing, fn) = spacing / fn;
|
||||
|
||||
/**
|
||||
* spiral_7 - Combination of spiral_3 and spiral_4 that doesn't sacrifice
|
||||
* performance. Hits an overflow when $fn is higher than 245 which creates
|
||||
* 8418 vectors at 60 rotations. This is an edge case, only appearing in OpenSCAD
|
||||
* 2019.05 (and maybe earlier), but should be explored.
|
||||
**/
|
||||
module spiral (rotations = 40, start_d = 48, spacing = 2.075, bottom = -7.1, fn) {
|
||||
|
||||
//bottom = -7.1;
|
||||
w = 1.4;
|
||||
top_w = .8;
|
||||
top_offset = (w - top_w);
|
||||
h = 2.2;
|
||||
|
||||
facetProfile = [
|
||||
[w, -bottom],
|
||||
[0, -bottom],
|
||||
[0, 0],
|
||||
[top_offset, -h],
|
||||
[w, -h],
|
||||
[w, 0]
|
||||
];
|
||||
|
||||
end_d = start_d + (spacing * 2 * rotations);
|
||||
end_r = end_d / 2;
|
||||
start_r = start_d / 2;
|
||||
|
||||
facetSize = calcFacetSize(end_d, fn);
|
||||
start_fn = round(circ(start_d) / facetSize);
|
||||
|
||||
|
||||
spiralPath = [ for (r = [0 : rotations - 1]) for (i = [0 : round(calcFn(start_d, start_fn, end_d, spacing, r )) - 1 ])
|
||||
[
|
||||
X(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i),
|
||||
Y(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i),
|
||||
0]
|
||||
];
|
||||
path_extrude(exShape=facetProfile, exPath=spiralPath);
|
||||
}
|
||||
|
||||
module spiral_reinforcement ( start_d = 48, spacing = 2.075, bottom = -2, fn) {
|
||||
rotations = 1;
|
||||
w = 1;
|
||||
top_w = .8;
|
||||
top_offset = (w - top_w);
|
||||
h = 2.2;
|
||||
|
||||
facetProfile = [
|
||||
[w, -bottom],
|
||||
[0, -bottom],
|
||||
[0, 0],
|
||||
[0, -h],
|
||||
[w, -h],
|
||||
[w, 0]
|
||||
];
|
||||
|
||||
end_d = start_d + (spacing * 2 * rotations);
|
||||
end_r = end_d / 2;
|
||||
start_r = start_d / 2;
|
||||
|
||||
facetSize = calcFacetSize(end_d, fn);
|
||||
start_fn = round(circ(start_d) / facetSize);
|
||||
|
||||
|
||||
spiralPath = [ for (r = [0 : rotations - 1]) for (i = [0 : round(calcFn(start_d, start_fn, end_d, spacing, r )) - 1 ])
|
||||
[
|
||||
X(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i),
|
||||
Y(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i),
|
||||
0]
|
||||
];
|
||||
path_extrude(exShape=facetProfile, exPath=spiralPath);
|
||||
}
|
||||
|
||||
/**
|
||||
* Core (center of the reel)
|
||||
**/
|
||||
module gnal_spiral_core () {
|
||||
$fn = 360;
|
||||
|
||||
core_center_h = 4.2 + 3;;
|
||||
|
||||
core_bottom_outer_d = 53;
|
||||
core_bottom_outer_void_d = 44;
|
||||
core_bottom_outer_h = 4.2;
|
||||
|
||||
core_d = 29.5;
|
||||
core_h = 8.5;
|
||||
|
||||
core_bottom_d = 26;
|
||||
core_bottom_h = 4.2;
|
||||
|
||||
top_z_offset = (core_h / 2) - (core_center_h / 2);
|
||||
|
||||
core_void_outer_d = 20.5;
|
||||
core_void_inner_d = 14.5;
|
||||
core_void_h = 11.5;
|
||||
|
||||
arms_outer_d = 48;
|
||||
arms_inner_d = 48 - 7;
|
||||
|
||||
void_d = 18;
|
||||
|
||||
film_void = 0.6;
|
||||
|
||||
difference () {
|
||||
union() {
|
||||
//center
|
||||
translate([0, 0, -core_center_h / 2]) {
|
||||
cylinder(r = (core_bottom_outer_d - 1) / 2, h = core_center_h, center = true);
|
||||
}
|
||||
//top
|
||||
translate([0, 0, top_z_offset]) {
|
||||
cylinder(r = core_d / 2, h = core_h + core_center_h, center = true);
|
||||
}
|
||||
}
|
||||
cylinder(r = void_d / 2, h = 30, center = true);
|
||||
translate([0, 0, -7.2]) spiral_insert_void();
|
||||
}
|
||||
|
||||
//arms
|
||||
difference () {
|
||||
union () {
|
||||
translate([0, 0, top_z_offset]) difference() {
|
||||
//adjusted arm (shorter)
|
||||
intersection () {
|
||||
cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
|
||||
translate([1, 0, 0]) cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
|
||||
}
|
||||
intersection () {
|
||||
cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
|
||||
translate([1, 0, 0]) cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
|
||||
}
|
||||
translate([0, arms_outer_d / 2, 0]) cube([arms_outer_d, arms_outer_d, arms_outer_d], center = true);
|
||||
}
|
||||
//rounded arm end
|
||||
translate([(arms_outer_d + arms_inner_d) / 4, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
|
||||
//adjusted arm
|
||||
translate([-((arms_outer_d + arms_inner_d) / 4) + 1, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
|
||||
difference () {
|
||||
rotate([0, 0, -120]) translate([13.75, 0, top_z_offset]) cube([16, 20, core_h + core_center_h], center = true);
|
||||
//remove piece from adjusted arm
|
||||
translate([-19, -14, 0]) rotate([0, 0, 10]) cube([4, 4, 30], center = true);
|
||||
//remove piece from non-adjusted arm
|
||||
rotate([0, 0, 45]) translate([-19, -14, 0]) rotate([0, 0, -10]) cube([4, 4, 30], center = true);
|
||||
rotate([0, 0, -120 - 37]) translate([18, 0, top_z_offset]) {
|
||||
cylinder(r = 6.8 / 2, h = 30, center = true);
|
||||
translate([-4, -2, 0]) cube([4, 4, 30], center = true);
|
||||
}
|
||||
rotate([0, 0, -120 + 37]) translate([18, 0, top_z_offset]) {
|
||||
cylinder(r = 6.8 / 2, h = 30, center = true);
|
||||
translate([-4, 2, 0]) cube([4, 4, 30], center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
//film void (notches)
|
||||
rotate([0, 0, -120]) {
|
||||
translate([20, -5, 0]) {
|
||||
rotate([0, 0, 45]) {
|
||||
cube([20, film_void, 30], center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
rotate([0, 0, -120]) {
|
||||
translate([20, 5, 0]) {
|
||||
rotate([0, 0, -45]) {
|
||||
cube([20, film_void, 30], center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//flatten piece
|
||||
rotate([0, 0, -120]) translate([25, 0, 0]) difference () {
|
||||
cylinder(r = 8 / 2, h = 30, center = true);
|
||||
translate([-6.9, 0, 0]) cube([8, 8, 30], center = true);
|
||||
}
|
||||
cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true);
|
||||
rotate([0, 0, -120]) translate([20, 0, -1.5]) rotate([0, 0, 45]) cube([20, 20, 3.01], center = true);
|
||||
cylinder(r = void_d / 2, h = 30, center = true);
|
||||
translate([0, 0, -7.2]) spiral_insert_void();
|
||||
}
|
||||
}
|
||||
|
||||
module spiral_insert_void () {
|
||||
intersection () {
|
||||
rotate([0, 45, 0]) cube([3, INSERT_D + 2, 3], center = true);
|
||||
cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true);
|
||||
}
|
||||
intersection () {
|
||||
rotate([0, 45, 90]) cube([3, INSERT_D + 2, 3], center = true);
|
||||
cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true);
|
||||
}
|
||||
}
|
||||
|
||||
module gnal_spiral_bottom_insert_s8 () {
|
||||
$fn = 160;
|
||||
OD = 10.5 + .3;
|
||||
void_d = 18 - .6;
|
||||
H = 17;
|
||||
D2 = INSERT_D;
|
||||
|
||||
translate([0, 0, 0]) difference () {
|
||||
union () {
|
||||
cylinder(r = void_d / 2, h = H, center = true);
|
||||
//skirt
|
||||
translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true);
|
||||
//notches
|
||||
translate([0, 0, -((H - 2.5) / 2) - .1]) {
|
||||
intersection () {
|
||||
cylinder(r = D2 / 2, h = 6, center = true);
|
||||
difference () {
|
||||
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
|
||||
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
|
||||
}
|
||||
}
|
||||
intersection () {
|
||||
cylinder(r = D2 / 2, h = 6, center = true);
|
||||
rotate([0, 0, 90]) difference () {
|
||||
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
|
||||
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
translate([0, 0, -LEN / 2]) {
|
||||
if (DEBUG) {
|
||||
cylinder(r = OD / 2, h = LEN);
|
||||
} else {
|
||||
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module gnal_spiral_bottom_insert_16 () {
|
||||
$fn = 160;
|
||||
OD = 10.5 + .3;
|
||||
|
||||
void_d = 18 - .6;
|
||||
H = 17 + 8;
|
||||
D2 = INSERT_D;
|
||||
|
||||
RIDGES = 8;
|
||||
RIDGE_D = 3;
|
||||
|
||||
translate([0, 0, 0]) difference () {
|
||||
union () {
|
||||
cylinder(r = void_d / 2, h = H, center = true);
|
||||
//skirt
|
||||
translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true);
|
||||
//notches
|
||||
translate([0, 0, -((H - 2.5) / 2) - .1]) {
|
||||
intersection () {
|
||||
cylinder(r = D2 / 2, h = 6, center = true);
|
||||
difference () {
|
||||
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
|
||||
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
|
||||
}
|
||||
}
|
||||
intersection () {
|
||||
cylinder(r = D2 / 2, h = 6, center = true);
|
||||
rotate([0, 0, 90]) difference () {
|
||||
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
|
||||
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
translate([0, 0, -(H / 2) - 2]) {
|
||||
if (DEBUG) {
|
||||
cylinder(r = OD / 2, h = LEN + 8);
|
||||
} else {
|
||||
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN + 8);
|
||||
}
|
||||
}
|
||||
translate([0, 0, 8.5]) {
|
||||
for (i = [0: RIDGES - 1]) {
|
||||
rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8.1, center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Comment to preserve my sanity when developing: This single-spiral
|
||||
* insert is the same height as the s8 insert but has a different
|
||||
* diameter void fo the screw to prevent mismatching of spindle screws
|
||||
* designed for different purposes.
|
||||
**/
|
||||
module gnal_spiral_bottom_insert_single () {
|
||||
$fn = 160;
|
||||
void_d = 18 - .6;
|
||||
H = 17;
|
||||
D2 = INSERT_D;
|
||||
|
||||
translate([0, 0, 0]) difference () {
|
||||
union () {
|
||||
cylinder(r = void_d / 2, h = H, center = true);
|
||||
//skirt
|
||||
translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true);
|
||||
//notches
|
||||
translate([0, 0, -((H - 2.5) / 2) - .1]) {
|
||||
intersection () {
|
||||
cylinder(r = D2 / 2, h = 6, center = true);
|
||||
difference () {
|
||||
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
|
||||
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
|
||||
}
|
||||
}
|
||||
intersection () {
|
||||
cylinder(r = D2 / 2, h = 6, center = true);
|
||||
rotate([0, 0, 90]) difference () {
|
||||
rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true);
|
||||
translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
translate([0, 0, -LEN / 2]) {
|
||||
if (DEBUG) {
|
||||
cylinder(r = SINGLE_THREAD_D / 2, h = LEN);
|
||||
} else {
|
||||
metric_thread (diameter=SINGLE_THREAD_D, pitch=PITCH, thread_size = THREAD, length = LEN);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Spacers
|
||||
**/
|
||||
|
||||
module spacer_ridges () {
|
||||
ridges = 16;
|
||||
for (i = [0 : ridges]) {
|
||||
rotate([0, 0, i * (360 / ridges)]) translate([13.5, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60);
|
||||
}
|
||||
}
|
||||
|
||||
module spacer_ridges_loose () {
|
||||
ridges = 16;
|
||||
intersection () {
|
||||
union () {
|
||||
for (i = [0 : ridges]) {
|
||||
rotate([0, 0, i * (360 / ridges)]) translate([13.7, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60);
|
||||
}
|
||||
}
|
||||
cylinder(r = 13.7, h = 12, center = true);
|
||||
}
|
||||
}
|
||||
module spacer_outer_ridges () {
|
||||
ridges = 24;
|
||||
H = 6.5;
|
||||
difference () {
|
||||
union () {
|
||||
for (i = [0 : ridges]) {
|
||||
rotate([0, 0, i * (360 / ridges)]) translate([14.6, 0, -4.75]) cylinder(r = 1.25, h = 8, $fn = 30);
|
||||
}
|
||||
}
|
||||
translate([0, 0, -4.1]) difference () {
|
||||
cylinder(r = 33 / 2, h = 4, center = true, $fn = 100);
|
||||
cylinder(r2 = 33 / 2, r1 = 27.75 / 2, h = 4.1, center = true, $fn = 100);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module gnal_spacer_solid () {
|
||||
core_d = 29.5;
|
||||
core_bottom_d = 26.2 + .2;
|
||||
void_d = 18;
|
||||
h = 8;
|
||||
|
||||
RIDGES = 8;
|
||||
RIDGE_D = 3;
|
||||
translate([0, 0, 0]) difference () {
|
||||
union () {
|
||||
difference () {
|
||||
cylinder(r = core_d / 2, h = h, center = true, $fn = 200);
|
||||
}
|
||||
translate([0, 0, -.75]) rotate([0, 180, 0]) spacer_outer_ridges();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* This spacer attaches to the top piece when it is used
|
||||
* for Super8 film.
|
||||
**/
|
||||
module gnal_spacer () {
|
||||
add = 3.25;
|
||||
core_d = 29.5;
|
||||
core_bottom_d = 26.2 + .2;
|
||||
void_d = 22.5;
|
||||
h = 8 + add;
|
||||
translate([0, 0, (add / 2) - 1]) difference () {
|
||||
union () {
|
||||
difference () {
|
||||
cylinder(r = core_d / 2, h = h, center = true, $fn = 200);
|
||||
translate([0, 0, 8]) cylinder(r = core_bottom_d / 2, h = h, center = true, $fn = 200);
|
||||
cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200);
|
||||
}
|
||||
translate([0, 0, 0]) spacer_ridges_loose();
|
||||
spacer_outer_ridges();
|
||||
}
|
||||
//trim top
|
||||
translate([0, 0, h - 0.1]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200);
|
||||
//trim bottom
|
||||
translate([0, 0, -h + 0.9]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
module gnal_spacer_16 () {
|
||||
core_d = 29.5;
|
||||
core_bottom_d = 26.2 + .2;
|
||||
void_d = 18.3;
|
||||
h = 8;
|
||||
|
||||
RIDGES = 8;
|
||||
RIDGE_D = 3;
|
||||
difference () {
|
||||
gnal_spacer_solid();
|
||||
cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200);
|
||||
}
|
||||
translate([0, 0, 0]) {
|
||||
for (i = [0: RIDGES - 1]) {
|
||||
rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8, center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Spindles
|
||||
**/
|
||||
|
||||
module gnal_spindle_base ( ) {
|
||||
D = 8.45 * 2;
|
||||
H = 20;
|
||||
union() {
|
||||
translate([0, 0, -15]) {
|
||||
cylinder(r = D / 2, h = H, center = true, $fn = FINE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module gnal_spindle_bottom_base ( HEX = false) {
|
||||
//for grip
|
||||
BUMP = 2; //diameter
|
||||
BUMPS = 6;
|
||||
TOP_D = 19;
|
||||
TOP_H = 9.5;
|
||||
TOP_OFFSET = -24.5;
|
||||
|
||||
union() {
|
||||
gnal_spindle_base();
|
||||
//hex version
|
||||
if (HEX) {
|
||||
translate([0, 0, TOP_OFFSET]) {
|
||||
cylinder(r = 11.1, h = TOP_H, center = true, $fn = 6);
|
||||
}
|
||||
} else {
|
||||
translate([0, 0, TOP_OFFSET]) {
|
||||
cylinder(r = TOP_D / 2, h = TOP_H, center = true, $fn = FINE);
|
||||
}
|
||||
}
|
||||
for (i = [0 : BUMPS]) {
|
||||
rotate([0, 0, (360 / BUMPS) * i]) {
|
||||
translate([0, 8.9, TOP_OFFSET]) {
|
||||
cylinder(r = BUMP, h = TOP_H, center = true, $fn = 60);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module outer_screw (LEN) {
|
||||
OD = 10;
|
||||
PITCH = 1.5;
|
||||
THREAD = 1.6;
|
||||
|
||||
difference () {
|
||||
translate([0, 0, -7.1]) {
|
||||
if (DEBUG) {
|
||||
cylinder(r = OD / 2, h = LEN);
|
||||
} else {
|
||||
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN);
|
||||
}
|
||||
}
|
||||
//bevel top of screw
|
||||
translate([0, 0, LEN - 8]) difference() {
|
||||
cylinder(r = 8, h = 3, center = true, $fn = FINE);
|
||||
cylinder(r1 = 6, r2 = 3, h = 3.01, center = true, $fn = FINE);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module gnal_spindle_bottom (ALT = false, HEX = false) {
|
||||
OD = 13.6 + .5;
|
||||
PITCH = 1.5;
|
||||
THREAD = 1.6;
|
||||
IN_LEN = 21;
|
||||
|
||||
LEN = 17.1;
|
||||
ALT_LEN = 27.1;
|
||||
difference () {
|
||||
gnal_spindle_bottom_base(HEX);
|
||||
//inner screw negative
|
||||
translate([0, 0, -30]) union() {
|
||||
if (DEBUG) {
|
||||
cylinder(r = OD / 2, h = IN_LEN);
|
||||
} else {
|
||||
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN);
|
||||
}
|
||||
translate([0, 0, 0.2]) {
|
||||
if (DEBUG) {
|
||||
cylinder(r = OD / 2, h = IN_LEN);
|
||||
} else {
|
||||
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
difference () {
|
||||
//outer screw
|
||||
if (ALT) {
|
||||
outer_screw(ALT_LEN);
|
||||
} else {
|
||||
outer_screw(LEN);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module number_one () {
|
||||
rotate([0, 45, 0]) cube([1, 6, 1], center = true);
|
||||
translate([0, 6 / 2, 0]) rotate([45, 0, 0]) cube([2, 1, 1], center = true);
|
||||
translate([0, -6 / 2, 0]) rotate([45, 0, 0]) cube([2, 1, 1], center = true);
|
||||
}
|
||||
|
||||
module gnal_spindle_top () {
|
||||
D = 50;
|
||||
THICKNESS = 2.5;
|
||||
H = 19.5;
|
||||
ROUND = 8;
|
||||
|
||||
HANDLE_D = 13.25;
|
||||
HANDLE_BASE = 16;
|
||||
HANDLE_TOP = 13;
|
||||
HANDLE_H = 54.5;
|
||||
|
||||
NOTCHES = 17;
|
||||
NOTCH = 1.5;
|
||||
FINE = 200;
|
||||
|
||||
difference () {
|
||||
//cup
|
||||
translate([0, 0, ROUND - 2]) minkowski () {
|
||||
cylinder(r = (D / 2) - ROUND, h = (H * 2) - ROUND, center = true, $fn = FINE);
|
||||
sphere(r = ROUND, $fn = FINE);
|
||||
}
|
||||
translate([0, 0, ROUND - 2 + THICKNESS]) minkowski () {
|
||||
cylinder(r = (D / 2) - THICKNESS - ROUND, h = (H * 2) - ROUND, center = true, $fn = 200);
|
||||
sphere(r = ROUND, $fn = FINE);
|
||||
}
|
||||
//hollow out cup
|
||||
translate([0, 0, H + ROUND - 4 - 3]) {
|
||||
cylinder(r = (D / 2) + 1, h = H * 2, center = true);
|
||||
}
|
||||
|
||||
//inner cup bevel
|
||||
translate([0, 0, (H / 2) - ROUND - 1]) {
|
||||
cylinder(r1 = (D / 2) - 2.5, r2 = (D / 2) - 2.5 + 1, h = 1, center = true, $fn = FINE);
|
||||
}
|
||||
//outer cup bevel
|
||||
translate([0, 0, (H / 2) - ROUND - 1]) {
|
||||
difference () {
|
||||
cylinder(r = (D / 2) + .25, h = 1, center = true, $fn = FINE);
|
||||
cylinder(r2 = (D / 2) - .8, r1 = (D / 2) - .8 + 1, h = 1, center = true, $fn = FINE);
|
||||
}
|
||||
}
|
||||
//hole in cup
|
||||
translate([21, 0, -10]) cylinder(r = 3 / 2, h = 40, center = true, $fn = 40);
|
||||
}
|
||||
|
||||
//reference cylinder
|
||||
//translate([0, 0, -6.6]) color("red") cylinder(r = 50 / 2, h = 19.57, center = true);
|
||||
|
||||
//handle
|
||||
translate([0, 0, -15]) {
|
||||
difference() {
|
||||
cylinder(r1 = HANDLE_BASE / 2, r2 = HANDLE_TOP / 2, h = HANDLE_H, $fn = FINE);
|
||||
//text
|
||||
translate([3 / 2, 0, 15 + 39.75]) number_one();
|
||||
translate([-3 / 2, 0, 15 + 39.75]) number_one();
|
||||
//ring negative
|
||||
translate([0, 0, 31 + 14.5]) {
|
||||
difference () {
|
||||
cylinder(r = HANDLE_D / 2 + 2, h = 20, center = true);
|
||||
cylinder(r = HANDLE_D / 2 - .5, h = 20 + 1, center = true);
|
||||
}
|
||||
}
|
||||
//handle notches
|
||||
for(i = [0 : NOTCHES]) {
|
||||
rotate([0, 0, i * (360 / NOTCHES)]) {
|
||||
translate([0, HANDLE_D / 2 - .5, 31 + 14.5]) {
|
||||
rotate([0.75, 0, 0]) rotate([0, 0, 45]) {
|
||||
Right_Angled_Triangle(a = NOTCH, b = NOTCH, height = 20, centerXYZ=[true, true, true]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
//bevel handle at top
|
||||
translate([0, 0, 54.01]) {
|
||||
difference () {
|
||||
cylinder(r = 13 / 2, h = 1, center = true);
|
||||
cylinder(r1 = 12.5 / 2, r2 = 11.5 / 2, h = 1.01, center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
//attach handle with pyramid cylinder
|
||||
translate ([0, 0, -13.7]) {
|
||||
cylinder(r1 = 16 / 2 + 2, r2 = 16 / 2 - .1, h = 3, center = true, $fn = FINE);
|
||||
}
|
||||
//plate under cup
|
||||
translate([0, 0, -17.75]) {
|
||||
cylinder(r = 31.5 / 2, h = 1, center = true, $fn = FINE);
|
||||
}
|
||||
//screw
|
||||
translate([0, 0, -37.5]) {
|
||||
if (DEBUG) {
|
||||
cylinder(r = 13.6 / 2, h = 21);
|
||||
} else {
|
||||
metric_thread (diameter=13.6, pitch = PITCH, thread_size = THREAD, length = 21);
|
||||
}
|
||||
}
|
||||
//cylinder plug
|
||||
translate([0, 0, -37.5 + (21 / 2) - 1]) {
|
||||
cylinder(r = 12 / 2, h = 21, center = true, $fn = FINE);
|
||||
}
|
||||
}
|
||||
|
||||
module gnal_spindle_single () {
|
||||
D = 50;
|
||||
THICKNESS = 2.5;
|
||||
H = 19.5;
|
||||
ROUND = 8;
|
||||
|
||||
HANDLE_D = 13.25;
|
||||
HANDLE_BASE = 16;
|
||||
HANDLE_TOP = 13;
|
||||
HANDLE_H = 54.5;
|
||||
|
||||
NOTCHES = 17;
|
||||
NOTCH = 1.5;
|
||||
FINE = 200;
|
||||
|
||||
SINGLE_INSERT = 11;
|
||||
|
||||
difference () {
|
||||
//cup
|
||||
translate([0, 0, ROUND - 2]) minkowski () {
|
||||
cylinder(r = (D / 2) - ROUND, h = (H * 2) - ROUND, center = true, $fn = FINE);
|
||||
sphere(r = ROUND, $fn = FINE);
|
||||
}
|
||||
translate([0, 0, ROUND - 2 + THICKNESS]) minkowski () {
|
||||
cylinder(r = (D / 2) - THICKNESS - ROUND, h = (H * 2) - ROUND, center = true, $fn = 200);
|
||||
sphere(r = ROUND, $fn = FINE);
|
||||
}
|
||||
//hollow out cup
|
||||
translate([0, 0, H + ROUND - 4 - 3]) {
|
||||
cylinder(r = (D / 2) + 1, h = H * 2, center = true);
|
||||
}
|
||||
|
||||
//inner cup bevel
|
||||
translate([0, 0, (H / 2) - ROUND - 1]) {
|
||||
cylinder(r1 = (D / 2) - 2.5, r2 = (D / 2) - 2.5 + 1, h = 1, center = true, $fn = FINE);
|
||||
}
|
||||
//outer cup bevel
|
||||
translate([0, 0, (H / 2) - ROUND - 1]) {
|
||||
difference () {
|
||||
cylinder(r = (D / 2) + .25, h = 1, center = true, $fn = FINE);
|
||||
cylinder(r2 = (D / 2) - .8, r1 = (D / 2) - .8 + 1, h = 1, center = true, $fn = FINE);
|
||||
}
|
||||
}
|
||||
//hole in cup
|
||||
translate([21, 0, -10]) cylinder(r = 3 / 2, h = 40, center = true, $fn = 40);
|
||||
}
|
||||
|
||||
//reference cylinder
|
||||
//translate([0, 0, -6.6]) color("red") cylinder(r = 50 / 2, h = 19.57, center = true);
|
||||
|
||||
//handle
|
||||
|
||||
translate([0, 0, -15]) {
|
||||
difference() {
|
||||
cylinder(r1 = HANDLE_BASE / 2, r2 = HANDLE_TOP / 2, h = HANDLE_H, $fn = FINE);
|
||||
//text
|
||||
translate([0, 0, 15 + 39.75]) number_one();
|
||||
//ring negative
|
||||
translate([0, 0, 31 + 14.5]) {
|
||||
difference () {
|
||||
cylinder(r = HANDLE_D / 2 + 2, h = 20, center = true);
|
||||
cylinder(r = HANDLE_D / 2 - .5, h = 20 + 1, center = true);
|
||||
}
|
||||
}
|
||||
//handle notches
|
||||
for(i = [0 : NOTCHES]) {
|
||||
rotate([0, 0, i * (360 / NOTCHES)]) {
|
||||
translate([0, HANDLE_D / 2 - .5, 31 + 14.5]) {
|
||||
rotate([0.75, 0, 0]) rotate([0, 0, 45]) {
|
||||
Right_Angled_Triangle(a = NOTCH, b = NOTCH, height = 20, centerXYZ=[true, true, true]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
//bevel handle at top
|
||||
translate([0, 0, 54.01]) {
|
||||
difference () {
|
||||
cylinder(r = 13 / 2, h = 1, center = true);
|
||||
cylinder(r1 = 12.5 / 2, r2 = 11.5 / 2, h = 1.01, center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
//attach handle with pyramid cylinder
|
||||
translate ([0, 0, -13.7]) {
|
||||
cylinder(r1 = 16 / 2 + 2, r2 = 16 / 2 - .1, h = 3, center = true, $fn = FINE);
|
||||
}
|
||||
//plate under cup
|
||||
translate([0, 0, -17.75]) {
|
||||
cylinder(r = 31.5 / 2, h = 1, center = true, $fn = FINE);
|
||||
}
|
||||
//insert for single layer
|
||||
translate ([0, 0, -24.25]) {
|
||||
cylinder(r = 22 / 2, h = 14, center = true, $fn = FINE);
|
||||
}
|
||||
//screw
|
||||
translate([0, 0, -37.5 - SINGLE_INSERT]) {
|
||||
if (DEBUG) {
|
||||
cylinder(r = SINGLE_THREAD_D / 2, h = 21);
|
||||
} else {
|
||||
metric_thread (diameter=SINGLE_THREAD_D, pitch = PITCH, thread_size = THREAD, length = 21);
|
||||
}
|
||||
}
|
||||
//cylinder plug
|
||||
translate([0, 0, -37.5 - SINGLE_INSERT + (21 / 2) - 1]) {
|
||||
cylinder(r = 10 / 2, h = 21, center = true, $fn = FINE);
|
||||
}
|
||||
}
|
||||
|
||||
module gnal_stacking_spindle () {
|
||||
OD = 10.5 + .3;
|
||||
IN_LEN = 21;
|
||||
|
||||
LEN = 17.1;
|
||||
ALT_LEN = 27.1;
|
||||
difference () {
|
||||
union () {
|
||||
gnal_spindle_base();
|
||||
translate([0, 0, -23.75]) gnal_spacer_solid();
|
||||
}
|
||||
//inner screw negative
|
||||
translate([0, 0, -30]) union() {
|
||||
if (DEBUG) {
|
||||
cylinder(r = OD / 2, h = IN_LEN);
|
||||
} else {
|
||||
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN);
|
||||
}
|
||||
translate([0, 0, 0.2]) {
|
||||
if (DEBUG) {
|
||||
cylinder(r = OD / 2, h = IN_LEN);
|
||||
} else {
|
||||
metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
difference () {
|
||||
outer_screw(LEN - 2);
|
||||
}
|
||||
}
|
|
@ -0,0 +1,89 @@
|
|||
include <./gnal_v3.scad>;
|
||||
|
||||
$fn = 250;
|
||||
|
||||
REEL_H = 42;
|
||||
REEL_D = 99;
|
||||
REEL_OUTER_WALL_H = 4;
|
||||
REEL_OUTER_WALL_W = 3;
|
||||
|
||||
REEL_INNER_D = 25.7 + 6;
|
||||
REEL_INNER_H = 19.5;
|
||||
REEL_INNER_WALL_W = 3;
|
||||
|
||||
SPOKE_H = 3;
|
||||
|
||||
module reel_frame () {
|
||||
//outer wall
|
||||
translate([0, 0, REEL_OUTER_WALL_H / 2]) difference () {
|
||||
cylinder(r = REEL_D / 2, h = REEL_OUTER_WALL_H, center = true);
|
||||
cylinder(r = (REEL_D / 2) - REEL_OUTER_WALL_W, h = REEL_OUTER_WALL_H + 1, center = true);
|
||||
}
|
||||
|
||||
//inner wall
|
||||
translate([0, 0, REEL_INNER_H / 2]) difference () {
|
||||
cylinder(r = REEL_INNER_D / 2, h = REEL_INNER_H, center = true);
|
||||
cylinder(r = (REEL_INNER_D / 2) - REEL_INNER_WALL_W, h = REEL_INNER_H + 1, center = true);
|
||||
translate([14, 0, 0]) rotate([0, 0, 45]) cube([10, 0.3, 20], center = true);
|
||||
translate([0, 0, -REEL_INNER_H / 2]) intersection () {
|
||||
cylinder(r = 30.5 / 2, h = 6, center = true);
|
||||
rotate([0, 45, 0]) cube([3, 31, 3], center = true);
|
||||
}
|
||||
}
|
||||
//top notches
|
||||
translate([0, 0, 19.4]) difference () {
|
||||
intersection () {
|
||||
cylinder(r = 30 / 2, h = 6, center = true);
|
||||
rotate([0, 45, 0]) cube([3, 30, 3], center = true);
|
||||
}
|
||||
cylinder(r = (REEL_INNER_D / 2) - REEL_INNER_WALL_W, h = 6 + 1, center = true);
|
||||
}
|
||||
|
||||
//spokes
|
||||
translate([0, 0, SPOKE_H / 2]) for (i = [0:5]) {
|
||||
rotate([0, 0, i * (360 / 6)]) {
|
||||
translate([0, ((REEL_D - REEL_INNER_D) / 2) - 1.5, 0]) {
|
||||
cube([4.5, (REEL_D - REEL_INNER_D) / 2, SPOKE_H], center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
translate([0, 0, 4]) rotate([0, 0, 8]) spiral(rotations = 15, fn = $fn, start_d = 29.5, bottom = -4);
|
||||
}
|
||||
|
||||
module reel_top () {
|
||||
//outer wall
|
||||
translate([0, 0, SPOKE_H / 2]) difference () {
|
||||
cylinder(r = REEL_D / 2, h = SPOKE_H, center = true);
|
||||
cylinder(r = (REEL_D / 2) - REEL_OUTER_WALL_W, h = REEL_OUTER_WALL_H + 1, center = true);
|
||||
}
|
||||
|
||||
//inner wall
|
||||
translate([0, 0, SPOKE_H / 2]) difference () {
|
||||
cylinder(r = REEL_INNER_D / 2, h = SPOKE_H, center = true);
|
||||
cylinder(r = (REEL_INNER_D / 2) - REEL_INNER_WALL_W, h = REEL_INNER_H + 1, center = true);
|
||||
translate([0, 0, -SPOKE_H / 2]) intersection () {
|
||||
cylinder(r = 30.5 / 2, h = 6, center = true);
|
||||
rotate([0, 45, 0]) cube([3, 31, 3], center = true);
|
||||
}
|
||||
}
|
||||
|
||||
translate([0, 0, SPOKE_H / 2]) difference () {
|
||||
cylinder(r = (REEL_INNER_D + REEL_D) / 4, h = SPOKE_H, center = true);
|
||||
cylinder(r = ((REEL_INNER_D + REEL_D) / 4) - REEL_INNER_WALL_W, h = REEL_INNER_H + 1, center = true);
|
||||
}
|
||||
|
||||
//spokes
|
||||
translate([0, 0, SPOKE_H / 2]) for (i = [0:5]) {
|
||||
rotate([0, 0, i * (360 / 6)]) {
|
||||
translate([0, ((REEL_D - REEL_INNER_D) / 2) - 1.5, 0]) {
|
||||
cube([4.5, (REEL_D - REEL_INNER_D) / 2, SPOKE_H], center = true);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//reel_frame();
|
||||
rotate([180, 0, 0]) reel_top();
|
||||
//translate([0, 0, -19.5]) reel_frame();
|
|
@ -0,0 +1,195 @@
|
|||
// path_extrude.scad -- Extrude a path in 3D space
|
||||
// usage: add "use <path_extrude.scad>;" to the top of your OpenSCAD source code
|
||||
|
||||
// Copyright (C) 2014-2019 David Eccles (gringer) <bioinformatics@gringene.org>
|
||||
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU General Public License for more details.
|
||||
|
||||
// You should have received a copy of the GNU General Public License
|
||||
// along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
// Determine the projection of a point on a plane centered at c1 with normal n1
|
||||
function project(p, c, n) =
|
||||
p - (n * (p - c)) * n / (n * n);
|
||||
|
||||
// determine angle between two points with a given normal orientation
|
||||
// see https://stackoverflow.com/questions/14066933/
|
||||
// direct-way-of-computing-clockwise-angle-between-2-vectors
|
||||
// dot = p1 * p2;
|
||||
// det = (p1[0]*p2[1]*n1[2] + p2[0]*n1[1]*p1[2] + n1[0]*p1[1]*p2[2]) -
|
||||
// (n1[0]*p2[1]*p1[2] + p1[0]*n1[1]*p2[2] + p2[0]*p1[1]*n1[2]);
|
||||
// atan2(det, dot);
|
||||
// determine angle between two planar points and a centre
|
||||
// with a given normal orientation
|
||||
function getPlanarAngle(p1, p2, c1, n1) =
|
||||
let(p1 = p1-c1, n1=n1 / norm(n1), p2=p2-c1)
|
||||
atan2((p1[0]*p2[1]*n1[2] + p2[0]*n1[1]*p1[2] + n1[0]*p1[1]*p2[2]) -
|
||||
(n1[0]*p2[1]*p1[2] + p1[0]*n1[1]*p2[2] + p2[0]*p1[1]*n1[2]), p1 * p2);
|
||||
|
||||
function c3D(tPoints) =
|
||||
(len(tPoints[0]) == undef) ? // single point
|
||||
c3D([tPoints])[0] :
|
||||
(len(tPoints[0]) < 3) ? // collection of 2D points
|
||||
tPoints * [[1,0,0],[0,1,0]] :
|
||||
tPoints; // 3D points
|
||||
|
||||
// translate a point (or points)
|
||||
function myTranslate(ofs, points, acc = []) =
|
||||
(len(points[0]) == undef) ?
|
||||
myTranslate(ofs, [points])[0] :
|
||||
[ for(i = [0:(len(points) - 1)])
|
||||
[ for(d = [0:(len(points[0])-1)]) (ofs[d] + points[i][d])]];
|
||||
|
||||
// rotate a point (or points)
|
||||
function myRotate(rotVec, points) =
|
||||
let(rotX = [[1, 0, 0],
|
||||
[0, cos(rotVec[0]), -sin(rotVec[0])],
|
||||
[0, sin(rotVec[0]), cos(rotVec[0])]],
|
||||
rotY = [[ cos(rotVec[1]), 0,-sin(rotVec[1])],
|
||||
[ 0, 1, 0],
|
||||
[ sin(rotVec[1]), 0, cos(rotVec[1])]],
|
||||
rotZ = [[ cos(rotVec[2]), sin(rotVec[2]), 0],
|
||||
[ sin(rotVec[2]), -cos(rotVec[2]), 0],
|
||||
[0, 0, 1]])
|
||||
(len(points[0]) == undef) ?
|
||||
myRotate(rotVec, [points])[0] :
|
||||
c3D(points) * rotX * rotY * rotZ;
|
||||
|
||||
// Determine spherical rotation for cartesian coordinates
|
||||
function rToS(pt) =
|
||||
[-acos((pt[2]) / norm(pt)),
|
||||
0,
|
||||
-atan2(pt[0],pt[1])];
|
||||
|
||||
function calcPreRot(p1, p2, p3) =
|
||||
let(n1=p2-p1, // normal between the two points (i.e. the plane that the polygon sits on)
|
||||
n2=p3-p2,
|
||||
rt1=rToS(n1),
|
||||
rt2=rToS(n2),
|
||||
pj1=(p2 + myRotate(rt2, [[1e42,0,0]])[0]),
|
||||
pj2=project(p=(p1 + myRotate(rt1, [[1e42,0,0]])[0]), c=p2, n=n2))
|
||||
getPlanarAngle(p1=pj1, p2=pj2, c1=p2, n1=n2);
|
||||
|
||||
function cumSum(x, res=[]) =
|
||||
(len(x) == len(res)) ? concat([0], res) :
|
||||
(len(res) == 0) ? cumSum(x=x, res=[x[0]]) :
|
||||
cumSum(x=x, res=concat(res, [x[len(res)] + res[len(res)-1]]));
|
||||
|
||||
// Create extrusion side panels for one polygon segment as triangles.
|
||||
// Note: panels are not necessarily be planar due to path twists
|
||||
function makeSides(shs, pts, ofs=0) =
|
||||
concat(
|
||||
[for(i=[0:(shs-1)]) [i+ofs, ((i+1) % shs + ofs + shs) % (shs * pts),
|
||||
(i+1) % shs + ofs]],
|
||||
[for(i=[0:(shs-1)]) [((i+1) % shs + ofs + shs) % (shs * pts),
|
||||
i+ofs, (i + ofs + shs) % (shs * pts)]]);
|
||||
|
||||
// Concatenate the contents of the outermost list
|
||||
function flatten(A, acc = [], aDone = 0) =
|
||||
(aDone >= len(A)) ? acc :
|
||||
flatten(A, acc=concat(acc, A[aDone]), aDone = aDone + 1);
|
||||
|
||||
// Linearly interpolate between two shapes
|
||||
function makeTween(shape1, shape2, t) =
|
||||
(t == 0) ? shape1 :
|
||||
(t == 1) ? shape2 :
|
||||
[for (i=[0:(len(shape1)-1)])
|
||||
(shape1[i]*(1-t) + shape2[i % len(shape2)]*(t))];
|
||||
|
||||
// Extrude a 2D shape through a 3D path
|
||||
// Note: merge has two effects:
|
||||
// 1) Removes end caps
|
||||
// 2) Adjusts the rotation of each path point
|
||||
// so that the end and start match up
|
||||
module path_extrude(exPath, exShape, exShape2=[],
|
||||
exRots = [0], exScale = [1], merge=false, preRotate=true){
|
||||
exShapeTween = (len(exShape2) == 0) ?
|
||||
exShape : exShape2;
|
||||
shs = len(exShape); // shs: shape size
|
||||
pts = len(exPath); // pts: path size
|
||||
exPathX = (merge) ? concat(exPath, [exPath[0], exPath[1]]) :
|
||||
concat(exPath,
|
||||
[exPath[pts-1] + (exPath[pts-1] - exPath[pts-2]),
|
||||
exPath[pts-1] + 2*(exPath[pts-1] - exPath[pts-2])]);
|
||||
exScaleX = (len(exScale) == len(exPath)) ? exScale :
|
||||
[for (i = [0:(pts-1)]) exScale[i % len(exScale)]];
|
||||
preRots = [for(i = [0:(pts-1)])
|
||||
preRotate ?
|
||||
calcPreRot(p1=exPathX[i], // "current" point on the path
|
||||
p2=exPathX[(i+1)], // "next" point on the path
|
||||
p3=exPathX[(i+2)]) :
|
||||
0 ];
|
||||
cumPreRots = cumSum(preRots);
|
||||
seDiff = cumPreRots[len(cumPreRots)-1]; // rotation difference (start - end)
|
||||
// rotation adjustment to get start to look like end
|
||||
seAdj = -seDiff / (len(cumPreRots));
|
||||
adjPreRots = (!merge) ? cumPreRots :
|
||||
[for(i = [0:(pts-1)]) (cumPreRots[i] + seAdj * i)];
|
||||
adjExRots = (len(exRots) == 1) ?
|
||||
[for(i = [0:(len(adjPreRots)-1)]) (adjPreRots[i] + exRots[0])] :
|
||||
[for(i = [0:(len(adjPreRots)-1)]) (adjPreRots[i] + exRots[i % len(exRots)])];
|
||||
phPoints = flatten([
|
||||
for(i = [0:(pts-1)])
|
||||
let(p1=exPathX[i],
|
||||
p2=exPathX[(i+1)],
|
||||
n1=p2-p1, // normal between the two points
|
||||
rt1=rToS(n1))
|
||||
myTranslate(p1, myRotate(rt1, myRotate([0,0,-adjExRots[i]],
|
||||
c3D(makeTween(exShape, exShapeTween, i / (pts-1)) *
|
||||
exScaleX[i]))))
|
||||
]);
|
||||
if(merge){ // just the surface, no end caps
|
||||
polyhedron(points=phPoints,
|
||||
faces=flatten([
|
||||
for(i = [0:(pts-1)])
|
||||
makeSides(shs, pts, ofs=shs*i)
|
||||
])
|
||||
);
|
||||
} else {
|
||||
polyhedron(points=phPoints,
|
||||
faces=concat(
|
||||
flatten([
|
||||
for(i = [0:(pts-2)])
|
||||
makeSides(shs, pts, ofs=shs*i)
|
||||
]),
|
||||
concat( // add in start / end covers
|
||||
[[for(i= [0:(shs-1)]) i]],
|
||||
[[for(i= [(len(phPoints)-1):-1:(len(phPoints)-shs)]) i]]
|
||||
)
|
||||
));
|
||||
}
|
||||
}
|
||||
|
||||
myPathTrefoil = [ for(t = [0:(360 / 101):359]) [ // trefoil knot
|
||||
5*(.41*cos(t) - .18*sin(t) - .83*cos(2*t) - .83*sin(2*t) -
|
||||
.11*cos(3*t) + .27*sin(3*t)),
|
||||
5*(.36*cos(t) + .27*sin(t) - 1.13*cos(2*t) + .30*sin(2*t) +
|
||||
.11*cos(3*t) - .27*sin(3*t)),
|
||||
5*(.45*sin(t) - .30*cos(2*t) +1.13*sin(2*t) -
|
||||
.11*cos(3*t) + .27*sin(3*t))] ];
|
||||
|
||||
myPointsOctagon =
|
||||
let(ofs1=15)
|
||||
[ for(t = [0:(360/8):359])
|
||||
((t==90)?1:2) * [cos(t+ofs1),sin(t+ofs1)]];
|
||||
myPointsChunkOctagon =
|
||||
let(ofs1=15)
|
||||
[ for(t = [0:(360/8):359])
|
||||
((t==90)?0.4:1.9) *
|
||||
[cos((t * 135/360 + 45)+ofs1+45)+0.5,sin((t * 135/360 + 45)+ofs1+45)]];
|
||||
//myPoints = [ for(t = [0:(360/8):359]) 2 * [cos(t+45),sin(t+45)]];
|
||||
|
||||
pts=[2,0,0.5];
|
||||
|
||||
/*translate([0,0,0]) {
|
||||
path_extrude(exRots = [$t*360], exShape=myPointsOctagon,
|
||||
exPath=myPathTrefoil, merge=true);
|
||||
}*/
|
|
@ -0,0 +1,372 @@
|
|||
/*
|
||||
* ISO-standard metric threads, following this specification:
|
||||
* http://en.wikipedia.org/wiki/ISO_metric_screw_thread
|
||||
*
|
||||
* Copyright 2017 Dan Kirshner - dan_kirshner@yahoo.com
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* See <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
* Version 2.3. 2017-08-31 Default for leadin: 0 (best for internal threads).
|
||||
* Version 2.2. 2017-01-01 Correction for angle; leadfac option. (Thanks to
|
||||
* Andrew Allen <a2intl@gmail.com>.)
|
||||
* Version 2.1. 2016-12-04 Chamfer bottom end (low-z); leadin option.
|
||||
* Version 2.0. 2016-11-05 Backwards compatibility (earlier OpenSCAD) fixes.
|
||||
* Version 1.9. 2016-07-03 Option: tapered.
|
||||
* Version 1.8. 2016-01-08 Option: (non-standard) angle.
|
||||
* Version 1.7. 2015-11-28 Larger x-increment - for small-diameters.
|
||||
* Version 1.6. 2015-09-01 Options: square threads, rectangular threads.
|
||||
* Version 1.5. 2015-06-12 Options: thread_size, groove.
|
||||
* Version 1.4. 2014-10-17 Use "faces" instead of "triangles" for polyhedron
|
||||
* Version 1.3. 2013-12-01 Correct loop over turns -- don't have early cut-off
|
||||
* Version 1.2. 2012-09-09 Use discrete polyhedra rather than linear_extrude ()
|
||||
* Version 1.1. 2012-09-07 Corrected to right-hand threads!
|
||||
*/
|
||||
|
||||
// Examples.
|
||||
//
|
||||
// Standard M8 x 1.
|
||||
// metric_thread (diameter=8, pitch=1, length=4);
|
||||
|
||||
// Square thread.
|
||||
// metric_thread (diameter=8, pitch=1, length=4, square=true);
|
||||
|
||||
// Non-standard: long pitch, same thread size.
|
||||
//metric_thread (diameter=8, pitch=4, length=4, thread_size=1, groove=true);
|
||||
|
||||
// Non-standard: 20 mm diameter, long pitch, square "trough" width 3 mm,
|
||||
// depth 1 mm.
|
||||
//metric_thread (diameter=20, pitch=8, length=16, square=true, thread_size=6,
|
||||
// groove=true, rectangle=0.333);
|
||||
|
||||
// English: 1/4 x 20.
|
||||
//english_thread (diameter=1/4, threads_per_inch=20, length=1);
|
||||
|
||||
// Tapered. Example -- pipe size 3/4" -- per:
|
||||
// http://www.engineeringtoolbox.com/npt-national-pipe-taper-threads-d_750.html
|
||||
// english_thread (diameter=1.05, threads_per_inch=14, length=3/4, taper=1/16);
|
||||
|
||||
// Thread for mounting on Rohloff hub.
|
||||
//difference () {
|
||||
// cylinder (r=20, h=10, $fn=100);
|
||||
//
|
||||
// metric_thread (diameter=34, pitch=1, length=10, internal=true, n_starts=6);
|
||||
//}
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
function segments (diameter) = min (50, ceil (diameter*6));
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// diameter - outside diameter of threads in mm. Default: 8.
|
||||
// pitch - thread axial "travel" per turn in mm. Default: 1.
|
||||
// length - overall axial length of thread in mm. Default: 1.
|
||||
// internal - true = clearances for internal thread (e.g., a nut).
|
||||
// false = clearances for external thread (e.g., a bolt).
|
||||
// (Internal threads should be "cut out" from a solid using
|
||||
// difference ()).
|
||||
// n_starts - Number of thread starts (e.g., DNA, a "double helix," has
|
||||
// n_starts=2). See wikipedia Screw_thread.
|
||||
// thread_size - (non-standard) axial width of a single thread "V" - independent
|
||||
// of pitch. Default: same as pitch.
|
||||
// groove - (non-standard) subtract inverted "V" from cylinder (rather than
|
||||
// add protruding "V" to cylinder).
|
||||
// square - Square threads (per
|
||||
// https://en.wikipedia.org/wiki/Square_thread_form).
|
||||
// rectangle - (non-standard) "Rectangular" thread - ratio depth/(axial) width
|
||||
// Default: 1 (square).
|
||||
// angle - (non-standard) angle (deg) of thread side from perpendicular to
|
||||
// axis (default = standard = 30 degrees).
|
||||
// taper - diameter change per length (National Pipe Thread/ANSI B1.20.1
|
||||
// is 1" diameter per 16" length). Taper decreases from 'diameter'
|
||||
// as z increases.
|
||||
// leadin - 0 (default): no chamfer; 1: chamfer (45 degree) at max-z end;
|
||||
// 2: chamfer at both ends, 3: chamfer at z=0 end.
|
||||
// leadfac - scale of leadin chamfer (default: 1.0 = 1/2 thread).
|
||||
module metric_thread (diameter=8, pitch=1, length=1, internal=false, n_starts=1,
|
||||
thread_size=-1, groove=false, square=false, rectangle=0,
|
||||
angle=30, taper=0, leadin=0, leadfac=1.0)
|
||||
{
|
||||
// thread_size: size of thread "V" different than travel per turn (pitch).
|
||||
// Default: same as pitch.
|
||||
local_thread_size = thread_size == -1 ? pitch : thread_size;
|
||||
local_rectangle = rectangle ? rectangle : 1;
|
||||
|
||||
n_segments = segments (diameter);
|
||||
h = (square || rectangle) ? local_thread_size*local_rectangle/2 : local_thread_size / (2 * tan(angle));
|
||||
|
||||
h_fac1 = (square || rectangle) ? 0.90 : 0.625;
|
||||
|
||||
// External thread includes additional relief.
|
||||
h_fac2 = (square || rectangle) ? 0.95 : 5.3/8;
|
||||
|
||||
tapered_diameter = diameter - length*taper;
|
||||
|
||||
difference () {
|
||||
union () {
|
||||
if (! groove) {
|
||||
metric_thread_turns (diameter, pitch, length, internal, n_starts,
|
||||
local_thread_size, groove, square, rectangle, angle,
|
||||
taper);
|
||||
}
|
||||
|
||||
difference () {
|
||||
|
||||
// Solid center, including Dmin truncation.
|
||||
if (groove) {
|
||||
cylinder (r1=diameter/2, r2=tapered_diameter/2,
|
||||
h=length, $fn=n_segments);
|
||||
} else if (internal) {
|
||||
cylinder (r1=diameter/2 - h*h_fac1, r2=tapered_diameter/2 - h*h_fac1,
|
||||
h=length, $fn=n_segments);
|
||||
} else {
|
||||
|
||||
// External thread.
|
||||
cylinder (r1=diameter/2 - h*h_fac2, r2=tapered_diameter/2 - h*h_fac2,
|
||||
h=length, $fn=n_segments);
|
||||
}
|
||||
|
||||
if (groove) {
|
||||
metric_thread_turns (diameter, pitch, length, internal, n_starts,
|
||||
local_thread_size, groove, square, rectangle,
|
||||
angle, taper);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// chamfer z=0 end if leadin is 2 or 3
|
||||
if (leadin == 2 || leadin == 3) {
|
||||
difference () {
|
||||
cylinder (r=diameter/2 + 1, h=h*h_fac1*leadfac, $fn=n_segments);
|
||||
|
||||
cylinder (r2=diameter/2, r1=diameter/2 - h*h_fac1*leadfac, h=h*h_fac1*leadfac,
|
||||
$fn=n_segments);
|
||||
}
|
||||
}
|
||||
|
||||
// chamfer z-max end if leadin is 1 or 2.
|
||||
if (leadin == 1 || leadin == 2) {
|
||||
translate ([0, 0, length + 0.05 - h*h_fac1*leadfac]) {
|
||||
difference () {
|
||||
cylinder (r=diameter/2 + 1, h=h*h_fac1*leadfac, $fn=n_segments);
|
||||
cylinder (r1=tapered_diameter/2, r2=tapered_diameter/2 - h*h_fac1*leadfac, h=h*h_fac1*leadfac,
|
||||
$fn=n_segments);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
// Input units in inches.
|
||||
// Note: units of measure in drawing are mm!
|
||||
module english_thread (diameter=0.25, threads_per_inch=20, length=1,
|
||||
internal=false, n_starts=1, thread_size=-1, groove=false,
|
||||
square=false, rectangle=0, angle=30, taper=0, leadin=0,
|
||||
leadfac=1.0)
|
||||
{
|
||||
// Convert to mm.
|
||||
mm_diameter = diameter*25.4;
|
||||
mm_pitch = (1.0/threads_per_inch)*25.4;
|
||||
mm_length = length*25.4;
|
||||
|
||||
echo (str ("mm_diameter: ", mm_diameter));
|
||||
echo (str ("mm_pitch: ", mm_pitch));
|
||||
echo (str ("mm_length: ", mm_length));
|
||||
metric_thread (mm_diameter, mm_pitch, mm_length, internal, n_starts,
|
||||
thread_size, groove, square, rectangle, angle, taper, leadin,
|
||||
leadfac);
|
||||
}
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
module metric_thread_turns (diameter, pitch, length, internal, n_starts,
|
||||
thread_size, groove, square, rectangle, angle,
|
||||
taper)
|
||||
{
|
||||
// Number of turns needed.
|
||||
n_turns = floor (length/pitch);
|
||||
|
||||
intersection () {
|
||||
|
||||
// Start one below z = 0. Gives an extra turn at each end.
|
||||
for (i=[-1*n_starts : n_turns+1]) {
|
||||
translate ([0, 0, i*pitch]) {
|
||||
metric_thread_turn (diameter, pitch, internal, n_starts,
|
||||
thread_size, groove, square, rectangle, angle,
|
||||
taper, i*pitch);
|
||||
}
|
||||
}
|
||||
|
||||
// Cut to length.
|
||||
translate ([0, 0, length/2]) {
|
||||
cube ([diameter*3, diameter*3, length], center=true);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
module metric_thread_turn (diameter, pitch, internal, n_starts, thread_size,
|
||||
groove, square, rectangle, angle, taper, z)
|
||||
{
|
||||
n_segments = segments (diameter);
|
||||
fraction_circle = 1.0/n_segments;
|
||||
for (i=[0 : n_segments-1]) {
|
||||
rotate ([0, 0, i*360*fraction_circle]) {
|
||||
translate ([0, 0, i*n_starts*pitch*fraction_circle]) {
|
||||
//current_diameter = diameter - taper*(z + i*n_starts*pitch*fraction_circle);
|
||||
thread_polyhedron ((diameter - taper*(z + i*n_starts*pitch*fraction_circle))/2,
|
||||
pitch, internal, n_starts, thread_size, groove,
|
||||
square, rectangle, angle);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ----------------------------------------------------------------------------
|
||||
module thread_polyhedron (radius, pitch, internal, n_starts, thread_size,
|
||||
groove, square, rectangle, angle)
|
||||
{
|
||||
n_segments = segments (radius*2);
|
||||
fraction_circle = 1.0/n_segments;
|
||||
|
||||
local_rectangle = rectangle ? rectangle : 1;
|
||||
|
||||
h = (square || rectangle) ? thread_size*local_rectangle/2 : thread_size / (2 * tan(angle));
|
||||
outer_r = radius + (internal ? h/20 : 0); // Adds internal relief.
|
||||
//echo (str ("outer_r: ", outer_r));
|
||||
|
||||
// A little extra on square thread -- make sure overlaps cylinder.
|
||||
h_fac1 = (square || rectangle) ? 1.1 : 0.875;
|
||||
inner_r = radius - h*h_fac1; // Does NOT do Dmin_truncation - do later with
|
||||
// cylinder.
|
||||
|
||||
translate_y = groove ? outer_r + inner_r : 0;
|
||||
reflect_x = groove ? 1 : 0;
|
||||
|
||||
// Make these just slightly bigger (keep in proportion) so polyhedra will
|
||||
// overlap.
|
||||
x_incr_outer = (! groove ? outer_r : inner_r) * fraction_circle * 2 * PI * 1.02;
|
||||
x_incr_inner = (! groove ? inner_r : outer_r) * fraction_circle * 2 * PI * 1.02;
|
||||
z_incr = n_starts * pitch * fraction_circle * 1.005;
|
||||
|
||||
/*
|
||||
(angles x0 and x3 inner are actually 60 deg)
|
||||
|
||||
/\ (x2_inner, z2_inner) [2]
|
||||
/ \
|
||||
(x3_inner, z3_inner) / \
|
||||
[3] \ \
|
||||
|\ \ (x2_outer, z2_outer) [6]
|
||||
| \ /
|
||||
| \ /|
|
||||
z |[7]\/ / (x1_outer, z1_outer) [5]
|
||||
| | | /
|
||||
| x | |/
|
||||
| / | / (x0_outer, z0_outer) [4]
|
||||
| / | / (behind: (x1_inner, z1_inner) [1]
|
||||
|/ | /
|
||||
y________| |/
|
||||
(r) / (x0_inner, z0_inner) [0]
|
||||
|
||||
*/
|
||||
|
||||
x1_outer = outer_r * fraction_circle * 2 * PI;
|
||||
|
||||
z0_outer = (outer_r - inner_r) * tan(angle);
|
||||
//echo (str ("z0_outer: ", z0_outer));
|
||||
|
||||
//polygon ([[inner_r, 0], [outer_r, z0_outer],
|
||||
// [outer_r, 0.5*pitch], [inner_r, 0.5*pitch]]);
|
||||
z1_outer = z0_outer + z_incr;
|
||||
|
||||
// Give internal square threads some clearance in the z direction, too.
|
||||
bottom = internal ? 0.235 : 0.25;
|
||||
top = internal ? 0.765 : 0.75;
|
||||
|
||||
translate ([0, translate_y, 0]) {
|
||||
mirror ([reflect_x, 0, 0]) {
|
||||
|
||||
if (square || rectangle) {
|
||||
|
||||
// Rule for face ordering: look at polyhedron from outside: points must
|
||||
// be in clockwise order.
|
||||
polyhedron (
|
||||
points = [
|
||||
[-x_incr_inner/2, -inner_r, bottom*thread_size], // [0]
|
||||
[x_incr_inner/2, -inner_r, bottom*thread_size + z_incr], // [1]
|
||||
[x_incr_inner/2, -inner_r, top*thread_size + z_incr], // [2]
|
||||
[-x_incr_inner/2, -inner_r, top*thread_size], // [3]
|
||||
|
||||
[-x_incr_outer/2, -outer_r, bottom*thread_size], // [4]
|
||||
[x_incr_outer/2, -outer_r, bottom*thread_size + z_incr], // [5]
|
||||
[x_incr_outer/2, -outer_r, top*thread_size + z_incr], // [6]
|
||||
[-x_incr_outer/2, -outer_r, top*thread_size] // [7]
|
||||
],
|
||||
|
||||
faces = [
|
||||
[0, 3, 7, 4], // This-side trapezoid
|
||||
|
||||
[1, 5, 6, 2], // Back-side trapezoid
|
||||
|
||||
[0, 1, 2, 3], // Inner rectangle
|
||||
|
||||
[4, 7, 6, 5], // Outer rectangle
|
||||
|
||||
// These are not planar, so do with separate triangles.
|
||||
[7, 2, 6], // Upper rectangle, bottom
|
||||
[7, 3, 2], // Upper rectangle, top
|
||||
|
||||
[0, 5, 1], // Lower rectangle, bottom
|
||||
[0, 4, 5] // Lower rectangle, top
|
||||
]
|
||||
);
|
||||
} else {
|
||||
|
||||
// Rule for face ordering: look at polyhedron from outside: points must
|
||||
// be in clockwise order.
|
||||
polyhedron (
|
||||
points = [
|
||||
[-x_incr_inner/2, -inner_r, 0], // [0]
|
||||
[x_incr_inner/2, -inner_r, z_incr], // [1]
|
||||
[x_incr_inner/2, -inner_r, thread_size + z_incr], // [2]
|
||||
[-x_incr_inner/2, -inner_r, thread_size], // [3]
|
||||
|
||||
[-x_incr_outer/2, -outer_r, z0_outer], // [4]
|
||||
[x_incr_outer/2, -outer_r, z0_outer + z_incr], // [5]
|
||||
[x_incr_outer/2, -outer_r, thread_size - z0_outer + z_incr], // [6]
|
||||
[-x_incr_outer/2, -outer_r, thread_size - z0_outer] // [7]
|
||||
],
|
||||
|
||||
faces = [
|
||||
[0, 3, 7, 4], // This-side trapezoid
|
||||
|
||||
[1, 5, 6, 2], // Back-side trapezoid
|
||||
|
||||
[0, 1, 2, 3], // Inner rectangle
|
||||
|
||||
[4, 7, 6, 5], // Outer rectangle
|
||||
|
||||
// These are not planar, so do with separate triangles.
|
||||
[7, 2, 6], // Upper rectangle, bottom
|
||||
[7, 3, 2], // Upper rectangle, top
|
||||
|
||||
[0, 5, 1], // Lower rectangle, bottom
|
||||
[0, 4, 5] // Lower rectangle, top
|
||||
]
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue