marker_separation/py/posterize.py

100 lines
2.7 KiB
Python

from sklearn.cluster import MiniBatchKMeans
import numpy as np
import argparse
import cv2
from common import convert_color, closest_color, create_colored_image, remove_from_list, list_match
class Posterize:
"""Posterize an image and then find nearest colors to use"""
colors = []
colors_dict = {}
original_colors = []
pallete = None
pallete_space = 'BGR'
comparison_space = 'BGR'
image = None
h = 0
w = 0
n_colors = 3
white = [255, 255, 255]
output = ''
def __init__ (self, image, pallete, n_colors, output) :
self.image = cv2.imread(image)
(self.h, self.w) = self.image.shape[:2]
self.pallete = pallete
self.n_colors = n_colors + 1
self.output = output
self.flatten_pallete()
self.posterize()
self.determine_colors()
def posterize (self):
lab = cv2.cvtColor(self.image, cv2.COLOR_BGR2LAB)
feature = lab.reshape((self.h * self.w, 3))
clusters = MiniBatchKMeans(n_clusters = self.n_colors, n_init = 'auto')
labels = clusters.fit_predict(feature)
quant = clusters.cluster_centers_.astype('uint8')[labels]
rquant = quant.reshape((self.h, self.w, 3))
rfeature = feature.reshape((self.h, self.w, 3))
bgrquant = cv2.cvtColor(rquant, cv2.COLOR_LAB2BGR)
#bgrfeature = cv2.cvtColor(rfeature, cv2.COLOR_LAB2BGR)
self.image = bgrquant
cv2.imshow('image', bgrquant)
cv2.waitKey(0)
cv2.destroyAllWindows()
def determine_colors (self):
reshaped = self.image.reshape(-1, self.image.shape[2])
self.original_colors = np.unique(reshaped, axis=0)
white = closest_color(self.original_colors, [255, 255, 255])
blank = create_colored_image(self.w, self.h, [255, 255, 255])
composite = create_colored_image(self.w, self.h, [255, 255, 255])
for i in range(self.n_colors) :
if list_match(self.original_colors[i], white) :
continue
mask = self.extract_color_mask(self.image, self.original_colors[i])
closest = closest_color(self.colors, self.original_colors[i])
self.colors = remove_from_list(self.colors, closest)
name = self.match_color_name(closest)
cv2.imwrite(f'{name}.png', mask)
color_mat = create_colored_image(self.w, self.h, closest)
color_mask = cv2.bitwise_or(color_mat, color_mat, mask = (255-mask))
cv2.imshow('image', composite)
cv2.waitKey(0)
cv2.destroyAllWindows()
def extract_color_mask (self, image, color):
mask = cv2.inRange(image, color, color)
return cv2.bitwise_not(mask)
def flatten_pallete (self) :
for color in self.pallete.colors:
self.colors.append(color['color'])
self.colors_dict[f'{color["color"][0]},{color["color"][1]},{color["color"][2]}'] = color['name']
self.pallete_space = color['space']
def match_color_name (self, key) :
return self.colors_dict[f'{key[0]},{key[1]},{key[2]}']