from sklearn.cluster import MiniBatchKMeans import numpy as np import argparse import cv2 from common import convert_color, closest_color_weighted_euclidean, closest_color_euclidean, create_colored_image, remove_from_list, list_match import os import subprocess class Posterize: """Posterize an image and then find nearest colors to use""" colors = [] colors_dict = {} original_colors = [] layers = [] previews = [] pallete = None pallete_space = 'BGR' comparison_space = 'BGR' image = None h = 0 w = 0 n_colors = 3 max_particles = 3000 conf = os.path.abspath('./conf/base.conf') stipple_gen = os.path.abspath('../../../src/stipple_gen') white = [255, 255, 255] output = None def __init__ (self, image, pallete, n_colors, output) : self.image = cv2.imread(image) (self.h, self.w) = self.image.shape[:2] self.pallete = pallete self.n_colors = n_colors + 1 self.output = output if not os.path.exists(self.output) : print(f'Output directory {self.output} does not exist, creating...') os.makedirs(self.output) self.flatten_pallete() self.posterize() self.determine_colors() self.stipple() self.preview() def posterize (self): lab = cv2.cvtColor(self.image, cv2.COLOR_BGR2LAB) feature = lab.reshape((self.h * self.w, 3)) clusters = MiniBatchKMeans(n_clusters = self.n_colors, n_init = 'auto') labels = clusters.fit_predict(feature) quant = clusters.cluster_centers_.astype('uint8')[labels] rquant = quant.reshape((self.h, self.w, 3)) rfeature = feature.reshape((self.h, self.w, 3)) bgrquant = cv2.cvtColor(rquant, cv2.COLOR_LAB2BGR) #bgrfeature = cv2.cvtColor(rfeature, cv2.COLOR_LAB2BGR) self.image = bgrquant cv2.imshow('image', bgrquant) cv2.waitKey(0) cv2.destroyAllWindows() def determine_colors (self): reshaped = self.image.reshape(-1, self.image.shape[2]) self.original_colors = np.unique(reshaped, axis=0) white, white_dist = closest_color_weighted_euclidean(self.original_colors, [255, 255, 255], 'BGR') blank = create_colored_image(self.w, self.h, [255, 255, 255]) composite = create_colored_image(self.w, self.h, [255, 255, 255]) mask = self.extract_color_mask(self.image, white) layer_name = f'WHITE.png' output_layer = os.path.join(self.output, layer_name) cv2.imwrite(output_layer, mask) self.layers.append({ 'layer' : output_layer, 'color' : white, 'space' : self.pallete_space }) for i in range(self.n_colors) : if list_match(self.original_colors[i], white) : continue original = self.original_colors[i] mask = self.extract_color_mask(self.image, original) original_normalized = convert_color(original, 'BGR', self.pallete_space) if self.pallete_space == 'RGB' or self.pallete_space == 'BGR' : closest, dist = closest_color_weighted_euclidean(self.colors, original_normalized, self.pallete_space) else : closest, dist = closest_color_euclidean(self.colors, original_normalized) self.colors = remove_from_list(self.colors, closest) name = self.match_color_name(closest) layer_name = f'{name}.png' output_layer = os.path.join(self.output, layer_name) cv2.imwrite(output_layer, mask) self.layers.append({ 'layer' : output_layer, 'color' : closest, 'space' : self.pallete_space }) mask = cv2.bitwise_not(mask) composite[mask > 0] = np.array(closest) cv2.imshow('image', composite) cv2.waitKey(0) cv2.destroyAllWindows() def extract_color_mask (self, image, color): mask = cv2.inRange(image, color, color) return cv2.bitwise_not(mask) def flatten_pallete (self) : for color in self.pallete.colors: self.colors.append(color['color']) self.colors_dict[f'{color["color"][0]},{color["color"][1]},{color["color"][2]}'] = color['name'] self.pallete_space = color['space'] def match_color_name (self, key) : return self.colors_dict[f'{key[0]},{key[1]},{key[2]}'] def stipple (self) : sanity_check = 0 for layer in self.layers : if 'WHITE.png' in layer['layer'] : continue l = cv2.imread(layer['layer'], 0) (h, w) = l.shape[:2] total = h * w black = total - cv2.countNonZero(l) ratio = black/total max_particles = round(ratio * self.max_particles) input_image = os.path.abspath(layer['layer']) dir_name, file_name = os.path.split(input_image) file_part, ext = os.path.splitext(file_name) output_image = os.path.join(dir_name, f'{file_part}_preview.png') output_svg = os.path.join(dir_name, f'{file_part}.svg') cmd = [ 'bash', 'stipple_gen.sh', '--inputImage', input_image, '--outputImage', output_image, '--outputSVG', output_svg, '--config', self.conf, '--maxParticles', str(max_particles) ] print(cmd) subprocess.call(cmd, cwd = self.stipple_gen) self.previews.append(output_image) def preview (self) : #composite = create_colored_image(self.w, self.h, [255, 255, 255]) print(self.previews)