This commit is contained in:
parent
f0de99a148
commit
d579e83762
|
@ -1,6 +1,7 @@
|
|||
import cv2
|
||||
import numpy as np
|
||||
from pallete_schema import PalleteSchema
|
||||
from common import convert_color, closest_color, create_colored_image
|
||||
|
||||
class ComparisonComparison:
|
||||
def __init__ (self) :
|
||||
|
@ -8,64 +9,24 @@ class ComparisonComparison:
|
|||
green = [5, 250, 5]
|
||||
blue = [240, 0, 20]
|
||||
comp_colors = [red, green, blue]
|
||||
pallete = PalleteSchema('./palletes/test_pallete.json')
|
||||
pallete = PalleteSchema('./palletes/printed_pallete.json')
|
||||
colors = self.get_colors(pallete.colors)
|
||||
for cc in comp_colors :
|
||||
ccbgr = self.convert_color(cc, 'RGB', 'BGR')
|
||||
closest = self.closest(colors, ccbgr)
|
||||
print(f'{closest} for {ccbgr}')
|
||||
ccbgr = convert_color(cc, 'RGB', 'HSV')
|
||||
closest = closest_color(colors, ccbgr)
|
||||
ccbgr = convert_color(cc, 'RGB', 'BGR')
|
||||
#print(f'{convert_color(closest,"BGR","RGB")} for {convert_color(ccbgr,"BGR","RGB")}')
|
||||
original = create_colored_image(100, 100, convert_color(closest, 'HSV', 'BGR'))
|
||||
chosen = create_colored_image(100, 100, ccbgr)
|
||||
combined = np.hstack([original, chosen])
|
||||
cv2.imshow("image", combined)
|
||||
cv2.waitKey(0)
|
||||
|
||||
def get_colors (self, pallete) :
|
||||
colors = []
|
||||
for color in pallete :
|
||||
colors.append(color['color'])
|
||||
colors.append(convert_color(color['color'], 'BGR', 'HSV'))
|
||||
return colors
|
||||
|
||||
def convert_color (self, color, color_space_a, color_space_b) :
|
||||
pixel = np.zeros([1, 1, 3], dtype=np.uint8)
|
||||
if color_space_a == 'RGB' :
|
||||
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2RGB)
|
||||
elif color_space_a == 'LAB' :
|
||||
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2LAB)
|
||||
elif color_space_a == 'HSV' :
|
||||
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2HSV)
|
||||
#default is BGR
|
||||
pixel[:] = color
|
||||
if color_space_a == 'RGB' and color_space_b == 'BGR' :
|
||||
b = cv2.COLOR_RGB2BGR
|
||||
elif color_space_a == 'BGR' and color_space_b == 'RGB' :
|
||||
b = cv2.COLOR_BGR2RGB
|
||||
elif color_space_a == 'RGB' and color_space_b == 'LAB' :
|
||||
b = cv2.COLOR_RGB2LAB
|
||||
elif color_space_a == 'LAB' and color_space_b == 'RGB' :
|
||||
b = cv2.COLOR_LAB2RGB
|
||||
elif color_space_a == 'BGR' and color_space_b == 'LAB' :
|
||||
b = cv2.COLOR_BGR2LAB
|
||||
elif color_space_a == 'LAB' and color_space_b == 'BGR' :
|
||||
b = cv2.COLOR_LAB2BGR
|
||||
elif color_space_a == 'HSV' and color_space_b == 'LAB' :
|
||||
b = cv2.COLOR_HSV2LAB
|
||||
elif color_space_a == 'LAB' and color_space_b == 'HSV' :
|
||||
b = cv2.COLOR_LAB2HSV
|
||||
elif color_space_a == 'RGB' and color_space_b == 'HSV' :
|
||||
b = cv2.COLOR_RGB2HSV
|
||||
elif color_space_a == 'HSV' and color_space_b == 'RGB' :
|
||||
b = cv2.COLOR_HSV2RGB
|
||||
elif color_space_a == 'BGR' and color_space_b == 'HSV' :
|
||||
b = cv2.COLOR_BGRHSV
|
||||
elif color_space_a == 'HSV' and color_space_b == 'BGR' :
|
||||
b = cv2.COLOR_HSV2BGR
|
||||
|
||||
cvt = cv2.cvtColor(pixel, b)
|
||||
return cvt[0, 0]
|
||||
|
||||
def closest(self, colors, color):
|
||||
colors = np.array(colors)
|
||||
color = np.array(color)
|
||||
distances = np.sqrt(np.sum((colors - color) ** 2, axis=1))
|
||||
index_of_smallest = np.where(distances == np.amin(distances))
|
||||
smallest_distance = colors[index_of_smallest]
|
||||
return smallest_distance
|
||||
|
||||
if __name__ == "__main__":
|
||||
ComparisonComparison()
|
|
@ -2,6 +2,7 @@ from sklearn.cluster import MiniBatchKMeans
|
|||
import numpy as np
|
||||
import argparse
|
||||
import cv2
|
||||
from common import convert_color, closest_color
|
||||
|
||||
class Posterize:
|
||||
"""Posterize an image and then find nearest colors to use"""
|
||||
|
@ -56,49 +57,3 @@ class Posterize:
|
|||
def extract_color_mask (self, image, color):
|
||||
mask = cv2.inRange(image, color, color)
|
||||
return cv2.bitwise_not(mask)
|
||||
|
||||
def convert_color (self, color, color_space_a, color_space_b) :
|
||||
pixel = np.zeros([1, 1, 3], dtype=np.uint8)
|
||||
if color_space_a == 'RGB' :
|
||||
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2RGB)
|
||||
elif color_space_a == 'LAB' :
|
||||
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2LAB)
|
||||
elif color_space_a == 'HSV' :
|
||||
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2HSV)
|
||||
#default is BGR
|
||||
pixel[:] = color
|
||||
if color_space_a == 'RGB' and color_space_b == 'BGR' :
|
||||
b = cv2.COLOR_RGB2BGR
|
||||
elif color_space_a == 'BGR' and color_space_b == 'RGB' :
|
||||
b = cv2.COLOR_BGR2RGB
|
||||
elif color_space_a == 'RGB' and color_space_b == 'LAB' :
|
||||
b = cv2.COLOR_RGB2LAB
|
||||
elif color_space_a == 'LAB' and color_space_b == 'RGB' :
|
||||
b = cv2.COLOR_LAB2RGB
|
||||
elif color_space_a == 'BGR' and color_space_b == 'LAB' :
|
||||
b = cv2.COLOR_BGR2LAB
|
||||
elif color_space_a == 'LAB' and color_space_b == 'BGR' :
|
||||
b = cv2.COLOR_LAB2BGR
|
||||
elif color_space_a == 'HSV' and color_space_b == 'LAB' :
|
||||
b = cv2.COLOR_HSV2LAB
|
||||
elif color_space_a == 'LAB' and color_space_b == 'HSV' :
|
||||
b = cv2.COLOR_LAB2HSV
|
||||
elif color_space_a == 'RGB' and color_space_b == 'HSV' :
|
||||
b = cv2.COLOR_RGB2HSV
|
||||
elif color_space_a == 'HSV' and color_space_b == 'RGB' :
|
||||
b = cv2.COLOR_HSV2RGB
|
||||
elif color_space_a == 'BGR' and color_space_b == 'HSV' :
|
||||
b = cv2.COLOR_BGRHSV
|
||||
elif color_space_a == 'HSV' and color_space_b == 'BGR' :
|
||||
b = cv2.COLOR_HSV2BGR
|
||||
|
||||
cvt = cv2.cvtColor(pixel, b)
|
||||
return cvt[0, 0]
|
||||
|
||||
def closest(self, colors, color):
|
||||
colors = np.array(colors)
|
||||
color = np.array(color)
|
||||
distances = np.sqrt(np.sum((colors - color) ** 2, axis=1))
|
||||
index_of_smallest = np.where(distances == np.amin(distances))
|
||||
smallest_distance = colors[index_of_smallest]
|
||||
return smallest_distance
|
||||
|
|
Loading…
Reference in New Issue