2023-10-23 14:32:35 +00:00
|
|
|
import cv2
|
|
|
|
import numpy as np
|
2023-10-24 02:46:18 +00:00
|
|
|
from pallete_schema import PalleteSchema
|
2023-10-23 14:32:35 +00:00
|
|
|
|
|
|
|
class ComparisonComparison:
|
2023-10-23 20:09:08 +00:00
|
|
|
def __init__ (self) :
|
2023-10-24 20:14:56 +00:00
|
|
|
red = [0, 10, 200]
|
|
|
|
green = [5, 250, 5]
|
|
|
|
blue = [240, 0, 20]
|
|
|
|
comp_colors = [red, green, blue]
|
|
|
|
pallete = PalleteSchema('./palletes/test_pallete.json')
|
|
|
|
colors = self.get_colors(pallete.colors)
|
|
|
|
for cc in comp_colors :
|
|
|
|
ccbgr = self.convert_color(cc, 'RGB', 'BGR')
|
|
|
|
closest = self.closest(colors, ccbgr)
|
|
|
|
print(f'{closest} for {ccbgr}')
|
2023-10-23 20:09:08 +00:00
|
|
|
|
2023-10-24 20:14:56 +00:00
|
|
|
def get_colors (self, pallete) :
|
|
|
|
colors = []
|
|
|
|
for color in pallete :
|
|
|
|
colors.append(color['color'])
|
|
|
|
return colors
|
2023-10-23 20:09:08 +00:00
|
|
|
|
|
|
|
def convert_color (self, color, color_space_a, color_space_b) :
|
2023-10-23 14:32:35 +00:00
|
|
|
pixel = np.zeros([1, 1, 3], dtype=np.uint8)
|
2023-10-24 20:14:56 +00:00
|
|
|
if color_space_a == 'RGB' :
|
|
|
|
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2RGB)
|
|
|
|
elif color_space_a == 'LAB' :
|
|
|
|
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2LAB)
|
|
|
|
elif color_space_a == 'HSV' :
|
|
|
|
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2HSV)
|
|
|
|
#default is BGR
|
2023-10-23 14:32:35 +00:00
|
|
|
pixel[:] = color
|
2023-10-24 20:14:56 +00:00
|
|
|
if color_space_a == 'RGB' and color_space_b == 'BGR' :
|
|
|
|
b = cv2.COLOR_RGB2BGR
|
|
|
|
elif color_space_a == 'BGR' and color_space_b == 'RGB' :
|
|
|
|
b = cv2.COLOR_BGR2RGB
|
|
|
|
elif color_space_a == 'RGB' and color_space_b == 'LAB' :
|
|
|
|
b = cv2.COLOR_RGB2LAB
|
|
|
|
elif color_space_a == 'LAB' and color_space_b == 'RGB' :
|
|
|
|
b = cv2.COLOR_LAB2RGB
|
|
|
|
elif color_space_a == 'BGR' and color_space_b == 'LAB' :
|
|
|
|
b = cv2.COLOR_BGR2LAB
|
|
|
|
elif color_space_a == 'LAB' and color_space_b == 'BGR' :
|
|
|
|
b = cv2.COLOR_LAB2BGR
|
|
|
|
elif color_space_a == 'HSV' and color_space_b == 'LAB' :
|
|
|
|
b = cv2.COLOR_HSV2LAB
|
|
|
|
elif color_space_a == 'LAB' and color_space_b == 'HSV' :
|
|
|
|
b = cv2.COLOR_LAB2HSV
|
|
|
|
elif color_space_a == 'RGB' and color_space_b == 'HSV' :
|
|
|
|
b = cv2.COLOR_RGB2HSV
|
|
|
|
elif color_space_a == 'HSV' and color_space_b == 'RGB' :
|
|
|
|
b = cv2.COLOR_HSV2RGB
|
|
|
|
elif color_space_a == 'BGR' and color_space_b == 'HSV' :
|
|
|
|
b = cv2.COLOR_BGRHSV
|
|
|
|
elif color_space_a == 'HSV' and color_space_b == 'BGR' :
|
|
|
|
b = cv2.COLOR_HSV2BGR
|
|
|
|
|
|
|
|
cvt = cv2.cvtColor(pixel, b)
|
2023-10-23 14:32:35 +00:00
|
|
|
return cvt[0, 0]
|
|
|
|
|
2023-10-24 20:14:56 +00:00
|
|
|
def closest(self, colors, color):
|
|
|
|
colors = np.array(colors)
|
|
|
|
color = np.array(color)
|
|
|
|
distances = np.sqrt(np.sum((colors - color) ** 2, axis=1))
|
|
|
|
index_of_smallest = np.where(distances == np.amin(distances))
|
|
|
|
smallest_distance = colors[index_of_smallest]
|
|
|
|
return smallest_distance
|
|
|
|
|
2023-10-23 14:32:35 +00:00
|
|
|
if __name__ == "__main__":
|
|
|
|
ComparisonComparison()
|