2023-10-24 20:46:08 +00:00
|
|
|
import cv2
|
|
|
|
import numpy as np
|
2023-10-27 03:37:27 +00:00
|
|
|
from math import sqrt
|
2023-10-24 20:46:08 +00:00
|
|
|
|
|
|
|
def convert_color (color, color_space_a, color_space_b) :
|
|
|
|
pixel = np.zeros([1, 1, 3], dtype=np.uint8)
|
2023-10-24 23:42:03 +00:00
|
|
|
|
2023-10-24 20:46:08 +00:00
|
|
|
if color_space_a == 'RGB' :
|
|
|
|
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2RGB)
|
|
|
|
elif color_space_a == 'LAB' :
|
|
|
|
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2LAB)
|
|
|
|
elif color_space_a == 'HSV' :
|
|
|
|
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2HSV)
|
2023-10-24 23:42:03 +00:00
|
|
|
|
2023-10-24 20:46:08 +00:00
|
|
|
#default is BGR
|
|
|
|
pixel[:] = color
|
2023-10-24 23:42:03 +00:00
|
|
|
|
2023-10-24 20:46:08 +00:00
|
|
|
if color_space_a == 'RGB' and color_space_b == 'BGR' :
|
|
|
|
b = cv2.COLOR_RGB2BGR
|
|
|
|
elif color_space_a == 'BGR' and color_space_b == 'RGB' :
|
|
|
|
b = cv2.COLOR_BGR2RGB
|
|
|
|
elif color_space_a == 'RGB' and color_space_b == 'LAB' :
|
|
|
|
b = cv2.COLOR_RGB2LAB
|
|
|
|
elif color_space_a == 'LAB' and color_space_b == 'RGB' :
|
|
|
|
b = cv2.COLOR_LAB2RGB
|
|
|
|
elif color_space_a == 'BGR' and color_space_b == 'LAB' :
|
|
|
|
b = cv2.COLOR_BGR2LAB
|
|
|
|
elif color_space_a == 'LAB' and color_space_b == 'BGR' :
|
|
|
|
b = cv2.COLOR_LAB2BGR
|
|
|
|
elif color_space_a == 'HSV' and color_space_b == 'LAB' :
|
|
|
|
b = cv2.COLOR_HSV2LAB
|
|
|
|
elif color_space_a == 'LAB' and color_space_b == 'HSV' :
|
|
|
|
b = cv2.COLOR_LAB2HSV
|
|
|
|
elif color_space_a == 'RGB' and color_space_b == 'HSV' :
|
|
|
|
b = cv2.COLOR_RGB2HSV
|
|
|
|
elif color_space_a == 'HSV' and color_space_b == 'RGB' :
|
|
|
|
b = cv2.COLOR_HSV2RGB
|
|
|
|
elif color_space_a == 'BGR' and color_space_b == 'HSV' :
|
|
|
|
b = cv2.COLOR_BGR2HSV
|
|
|
|
elif color_space_a == 'HSV' and color_space_b == 'BGR' :
|
|
|
|
b = cv2.COLOR_HSV2BGR
|
2023-10-24 21:09:09 +00:00
|
|
|
elif color_space_a == 'RGB' and color_space_b == 'RGB' :
|
|
|
|
b = None
|
|
|
|
elif color_space_a == 'BGR' and color_space_b == 'BGR' :
|
|
|
|
b = None
|
|
|
|
elif color_space_a == 'LAB' and color_space_b == 'LAB' :
|
|
|
|
b = None
|
2023-10-24 23:42:03 +00:00
|
|
|
elif color_space_a == 'HSV' and color_space_b == 'HSV' :
|
2023-10-24 21:09:09 +00:00
|
|
|
b = None
|
|
|
|
|
|
|
|
if b is not None :
|
|
|
|
cvt = cv2.cvtColor(pixel, b)
|
|
|
|
else :
|
|
|
|
cvt = pixel
|
2023-10-24 20:46:08 +00:00
|
|
|
|
|
|
|
return cvt[0, 0]
|
|
|
|
|
|
|
|
def closest_color (colors, color):
|
|
|
|
colors = np.array(colors)
|
|
|
|
color = np.array(color)
|
|
|
|
distances = np.sqrt(np.sum((colors - color) ** 2, axis=1))
|
|
|
|
index_of_smallest = np.where(distances == np.amin(distances))
|
|
|
|
smallest_distance = colors[index_of_smallest]
|
2023-10-24 23:42:03 +00:00
|
|
|
return smallest_distance[0]
|
2023-10-24 20:46:08 +00:00
|
|
|
|
2023-10-27 03:37:27 +00:00
|
|
|
# Works for RGB, BGR, LAB and HSV(?)
|
|
|
|
def closest_color_pythagorean (colors, color) :
|
|
|
|
mDist = float('inf')
|
|
|
|
mIdx = -1
|
|
|
|
for idx, comp in enumerate(colors) :
|
|
|
|
dist = pythagorean_distance(comp[0], comp[1], comp[2], color[0], color[1], color[2])
|
|
|
|
if dist < mDist :
|
|
|
|
mDist = dist
|
|
|
|
mIds = idx
|
|
|
|
return color[mIdx], mDist
|
|
|
|
|
|
|
|
def closest_color_weighted_pythagorean (colors, color, space) :
|
|
|
|
mDist = float('inf')
|
|
|
|
mIdx = -1
|
|
|
|
for idx, comp in enumerate(colors) :
|
|
|
|
if space == 'BGR' :
|
|
|
|
dist = weighed_pythagorean_distance(comp[2], comp[1], comp[0], color[2], color[1], color[1])
|
|
|
|
elif space == 'RGB' :
|
|
|
|
dist = weighed_pythagorean_distance(comp[0], comp[1], comp[2], color[0], color[1], color[2])
|
|
|
|
else :
|
|
|
|
raise Exception(f'closest_color_weighted_pythagorean does not support color space {space}')
|
|
|
|
break
|
|
|
|
|
|
|
|
if dist < mDist :
|
|
|
|
mDist = dist
|
|
|
|
mIds = idx
|
|
|
|
return color[mIdx], mDist
|
|
|
|
|
2023-10-24 20:46:08 +00:00
|
|
|
def create_colored_image (width, height, bgr_color):
|
|
|
|
image = np.zeros((height, width, 3), np.uint8)
|
|
|
|
image[:] = bgr_color
|
2023-10-24 23:42:03 +00:00
|
|
|
return image
|
|
|
|
|
|
|
|
def remove_from_list (l, item) :
|
|
|
|
new_array = []
|
|
|
|
for i in l :
|
|
|
|
if not list_match(i, item) :
|
|
|
|
new_array.append(i)
|
|
|
|
return new_array
|
|
|
|
|
|
|
|
def list_match (a, b) :
|
|
|
|
for i in range(len(a)) :
|
|
|
|
if a[i] != b[i] :
|
|
|
|
return False
|
2023-10-27 03:37:27 +00:00
|
|
|
return True
|
|
|
|
|
|
|
|
def pythagorean_distance (r1, g1, b1, r2, g2, b2) :
|
|
|
|
return sqrt(pow(r1-r2, 2) + pow(g1-g2, 2) + pow(b1-b2, 2))
|
|
|
|
|
|
|
|
def weighted_pythagorean_distance (r1, g1, b1, r2, g2, b2) :
|
|
|
|
R = 0.30
|
|
|
|
G = 0.59
|
|
|
|
B = 0.11
|
|
|
|
return sqrt(pow((r1-r2) * R, 2) + pow((g1-g2) * G, 2) + pow((b1-b2) * B, 2))
|