168 lines
5.0 KiB
Python
168 lines
5.0 KiB
Python
import cv2
|
|
import numpy as np
|
|
from math import sqrt, pow
|
|
|
|
def convert_color (color, color_space_a, color_space_b) :
|
|
pixel = np.zeros([1, 1, 3], dtype=np.uint8)
|
|
|
|
if color_space_a == 'RGB' :
|
|
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2RGB)
|
|
elif color_space_a == 'LAB' :
|
|
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2LAB)
|
|
elif color_space_a == 'HSV' :
|
|
pixel = cv2.cvtColor(pixel, cv2.COLOR_BGR2HSV)
|
|
|
|
#default is BGR
|
|
pixel[:] = color
|
|
|
|
if color_space_a == 'RGB' and color_space_b == 'BGR' :
|
|
b = cv2.COLOR_RGB2BGR
|
|
elif color_space_a == 'BGR' and color_space_b == 'RGB' :
|
|
b = cv2.COLOR_BGR2RGB
|
|
elif color_space_a == 'RGB' and color_space_b == 'LAB' :
|
|
b = cv2.COLOR_RGB2LAB
|
|
elif color_space_a == 'LAB' and color_space_b == 'RGB' :
|
|
b = cv2.COLOR_LAB2RGB
|
|
elif color_space_a == 'BGR' and color_space_b == 'LAB' :
|
|
b = cv2.COLOR_BGR2LAB
|
|
elif color_space_a == 'LAB' and color_space_b == 'BGR' :
|
|
b = cv2.COLOR_LAB2BGR
|
|
elif color_space_a == 'HSV' and color_space_b == 'LAB' :
|
|
b = cv2.COLOR_HSV2LAB
|
|
elif color_space_a == 'LAB' and color_space_b == 'HSV' :
|
|
b = cv2.COLOR_LAB2HSV
|
|
elif color_space_a == 'RGB' and color_space_b == 'HSV' :
|
|
b = cv2.COLOR_RGB2HSV
|
|
elif color_space_a == 'HSV' and color_space_b == 'RGB' :
|
|
b = cv2.COLOR_HSV2RGB
|
|
elif color_space_a == 'BGR' and color_space_b == 'HSV' :
|
|
b = cv2.COLOR_BGR2HSV
|
|
elif color_space_a == 'HSV' and color_space_b == 'BGR' :
|
|
b = cv2.COLOR_HSV2BGR
|
|
elif color_space_a == 'RGB' and color_space_b == 'RGB' :
|
|
b = None
|
|
elif color_space_a == 'BGR' and color_space_b == 'BGR' :
|
|
b = None
|
|
elif color_space_a == 'LAB' and color_space_b == 'LAB' :
|
|
b = None
|
|
elif color_space_a == 'HSV' and color_space_b == 'HSV' :
|
|
b = None
|
|
|
|
if b is not None :
|
|
cvt = cv2.cvtColor(pixel, b)
|
|
else :
|
|
cvt = pixel
|
|
|
|
return cvt[0, 0]
|
|
|
|
def closest_color (colors, color):
|
|
colors = np.array(colors)
|
|
color = np.array(color)
|
|
distances = np.sqrt(np.sum((colors - color) ** 2, axis=1))
|
|
index_of_smallest = np.where(distances == np.amin(distances))
|
|
smallest_distance = colors[index_of_smallest]
|
|
return smallest_distance[0]
|
|
|
|
# Works for RGB, BGR, LAB and HSV(?)
|
|
def closest_color_euclidean (colors, color) :
|
|
#print(len(colors))
|
|
mDist = float('inf')
|
|
mIdx = -1
|
|
color = [float(i) for i in list(color)]
|
|
for idx, comp in enumerate(colors) :
|
|
comp = [float(i) for i in list(comp)]
|
|
dist = euclidean_distance(comp[0], comp[1], comp[2], color[0], color[1], color[2])
|
|
#print(f'{color} -> {comp} = {dist}')
|
|
if dist < mDist :
|
|
mDist = dist
|
|
mIdx = idx
|
|
return colors[mIdx], mDist
|
|
|
|
def closest_color_weighted_euclidean (colors, color, space) :
|
|
#print(len(colors))
|
|
mDist = float('inf')
|
|
mIdx = -1
|
|
color = [float(i) for i in list(color)]
|
|
for idx, comp in enumerate(colors) :
|
|
comp = [float(i) for i in list(comp)]
|
|
if space == 'BGR' :
|
|
dist = weighted_euclidean_distance(comp[2], comp[1], comp[0], color[2], color[1], color[0])
|
|
elif space == 'RGB' :
|
|
dist = weighted_euclidean_distance(comp[0], comp[1], comp[2], color[0], color[1], color[2])
|
|
else :
|
|
raise Exception(f'closest_color_weighted_euclidean does not support color space {space}')
|
|
break
|
|
#print(f'{color} -> {comp} = {dist}')
|
|
if dist < mDist :
|
|
mDist = dist
|
|
mIdx = idx
|
|
return colors[mIdx], mDist
|
|
|
|
def create_colored_image (width, height, bgr_color):
|
|
image = np.zeros((height, width, 3), np.uint8)
|
|
image[:] = bgr_color
|
|
return image
|
|
|
|
def remove_from_list (l, item) :
|
|
new_array = []
|
|
for i in l :
|
|
if not list_match(i, item) :
|
|
new_array.append(i)
|
|
return new_array
|
|
|
|
def list_match (a, b) :
|
|
for i in range(len(a)) :
|
|
if a[i] != b[i] :
|
|
return False
|
|
return True
|
|
|
|
def rgb_euclidean_distance(rgba, rgbb) :
|
|
return euclidean_distance(rgba[0], rgba[1], rgba[2], rgbb[0], rgbb[1], rgbb[2])
|
|
|
|
def bgr_euclidean_distance(bgra, bgrb) :
|
|
return euclidean_distance(bgra[2], bgra[1], bgra[0], bgrb[2], bgrb[1], bgrb[0])
|
|
|
|
def numpy_distance (r1, g1, b1, r2, g2, b2) :
|
|
p0 = np.array([r1, g1, b1])
|
|
p1 = np.array([r2, g2, b2])
|
|
d = np.linalg.norm(p0 - p1)
|
|
return d
|
|
#return sqrt(pow(abs(r1-r2), 2) + pow(abs(g1-g2), 2) + pow(abs(b1-b2), 2))
|
|
|
|
def euclidean_distance (r1, g1, b1, r2, g2, b2):
|
|
d = 0.0
|
|
d = sqrt((r2 - r1)**2 + (g2 - g1)**2 + (b2 - b1)**2)
|
|
return d
|
|
|
|
def weighted_euclidean_distance (r1, g1, b1, r2, g2, b2) :
|
|
R = 0.30
|
|
G = 0.59
|
|
B = 0.11
|
|
#print(type(r1))
|
|
return sqrt( ((r2-r1) * R)**2 + ((g2-g1) * G)**2 + ((b2-b1) * B)**2 )
|
|
|
|
def to_luma (color, space) :
|
|
color = [float(i) for i in list(color)]
|
|
if space == 'RGB' :
|
|
return rgb_to_luma(color[0], color[1], color[2])
|
|
elif space == 'BGR' :
|
|
return rgb_to_luma(color[2], color[1], color[0])
|
|
|
|
def rgb_to_luma (r, g, b) :
|
|
R = 0.2126
|
|
G = 0.7152
|
|
B = 0.0722
|
|
|
|
return (r * R) + (g * G) + (b * B)
|
|
|
|
def convertScale(img, alpha, beta):
|
|
"""Add bias and gain to an image with saturation arithmetics. Unlike
|
|
cv2.convertScaleAbs, it does not take an absolute value, which would lead to
|
|
nonsensical results (e.g., a pixel at 44 with alpha = 3 and beta = -210
|
|
becomes 78 with OpenCV, when in fact it should become 0).
|
|
"""
|
|
|
|
new_img = img * alpha + beta
|
|
new_img[new_img < 0] = 0
|
|
new_img[new_img > 255] = 255
|
|
return new_img.astype(np.uint8) |