axi/axi/device.py

212 lines
6.0 KiB
Python

from __future__ import division, print_function
import time
from math import modf
from serial import Serial
from serial.tools.list_ports import comports
from .paths import path_length
from .planner import Planner
from .progress import Bar
TIMESLICE_MS = 10
MICROSTEPPING_MODE = 1
STEP_DIVIDER = 2 ** (MICROSTEPPING_MODE - 1)
STEPS_PER_INCH = 2032 / STEP_DIVIDER
STEPS_PER_MM = 80 / STEP_DIVIDER
PEN_UP_POSITION = 60
PEN_UP_SPEED = 150
PEN_UP_DELAY = 0
PEN_DOWN_POSITION = 40
PEN_DOWN_SPEED = 150
PEN_DOWN_DELAY = 0
ACCELERATION = 16
MAX_VELOCITY = 4
CORNER_FACTOR = 0.001
JOG_ACCELERATION = 16
JOG_MAX_VELOCITY = 8
VID_PID = '04D8:FD92'
def find_port():
for port in comports():
if VID_PID in port[2]:
return port[0]
return None
class Device(object):
def __init__(self, **kwargs):
self.steps_per_unit = STEPS_PER_INCH
self.pen_up_position = PEN_UP_POSITION
self.pen_up_speed = PEN_UP_SPEED
self.pen_up_delay = PEN_UP_DELAY
self.pen_down_position = PEN_DOWN_POSITION
self.pen_down_speed = PEN_DOWN_SPEED
self.pen_down_delay = PEN_DOWN_DELAY
self.acceleration = ACCELERATION
self.max_velocity = MAX_VELOCITY
self.corner_factor = CORNER_FACTOR
self.jog_acceleration = JOG_ACCELERATION
self.jog_max_velocity = JOG_MAX_VELOCITY
for k, v in kwargs.items():
setattr(self, k, v)
self.error = (0, 0) # accumulated step error
port = find_port()
if port is None:
raise Exception('cannot find axidraw device')
self.serial = Serial(port, timeout=1)
self.configure()
def configure(self):
servo_min = 7500
servo_max = 28000
pen_up_position = self.pen_up_position / 100
pen_up_position = int(
servo_min + (servo_max - servo_min) * pen_up_position)
pen_down_position = self.pen_down_position / 100
pen_down_position = int(
servo_min + (servo_max - servo_min) * pen_down_position)
self.command('SC', 4, pen_up_position)
self.command('SC', 5, pen_down_position)
self.command('SC', 11, int(self.pen_up_speed * 5))
self.command('SC', 12, int(self.pen_down_speed * 5))
def close(self):
self.serial.close()
def make_planner(self, jog=False):
a = self.acceleration
vmax = self.max_velocity
cf = self.corner_factor
if jog:
a = self.jog_acceleration
vmax = self.jog_max_velocity
return Planner(a, vmax, cf)
def readline(self):
return self.serial.readline().strip()
def command(self, *args):
line = ','.join(map(str, args))
self.serial.write((line + '\r').encode('utf-8'))
return self.readline()
# higher level functions
def move(self, dx, dy):
self.run_path([(0, 0), (dx, dy)])
def goto(self, x, y, jog=True):
# TODO: jog if pen up
px, py = self.read_position()
self.run_path([(px, py), (x, y)], jog)
def home(self):
self.goto(0, 0, True)
# misc commands
def version(self):
return self.command('V')
# motor functions
def enable_motors(self):
m = MICROSTEPPING_MODE
return self.command('EM', m, m)
def disable_motors(self):
return self.command('EM', 0, 0)
def motor_status(self):
return self.command('QM')
def zero_position(self):
return self.command('CS')
def read_position(self):
response = self.command('QS')
self.readline()
a, b = map(int, response.split(','))
a /= self.steps_per_unit
b /= self.steps_per_unit
y = (a - b) / 2
x = y + b
return x, y
def stepper_move(self, duration, a, b):
return self.command('XM', duration, a, b)
def wait(self):
while '1' in self.motor_status():
time.sleep(0.01)
def run_plan(self, plan):
step_ms = TIMESLICE_MS
step_s = step_ms / 1000
t = 0
while t < plan.t:
i1 = plan.instant(t)
i2 = plan.instant(t + step_s)
d = i2.p.sub(i1.p)
ex, ey = self.error
ex, sx = modf(d.x * self.steps_per_unit + ex)
ey, sy = modf(d.y * self.steps_per_unit + ey)
self.error = ex, ey
self.stepper_move(step_ms, int(sx), int(sy))
t += step_s
# self.wait()
def run_path(self, path, jog=False):
planner = self.make_planner(jog)
plan = planner.plan(path)
self.run_plan(plan)
def run_drawing(self, drawing, progress=True):
print('number of paths : %d' % len(drawing.paths))
print('pen down length : %g' % drawing.down_length)
print('pen up length : %g' % drawing.up_length)
print('total length : %g' % drawing.length)
print('drawing bounds : %s' % str(drawing.bounds))
self.pen_up()
position = (0, 0)
bar = Bar(drawing.length, enabled=progress)
for path in drawing.paths:
jog = [position, path[0]]
self.run_path(jog, jog=True)
bar.increment(path_length(jog))
self.pen_down()
self.run_path(path)
self.pen_up()
position = path[-1]
bar.increment(path_length(path))
bar.done()
self.run_path([position, (0, 0)], jog=True)
def plan_drawing(self, drawing):
result = []
planner = self.make_planner()
for path in drawing.all_paths:
result.append(planner.plan(path))
return result
# pen functions
def pen_up(self):
delta = abs(self.pen_up_position - self.pen_down_position)
duration = int(1000 * delta / self.pen_up_speed)
delay = max(0, duration + self.pen_up_delay)
return self.command('SP', 1, delay)
def pen_down(self):
delta = abs(self.pen_up_position - self.pen_down_position)
duration = int(1000 * delta / self.pen_down_speed)
delay = max(0, duration + self.pen_down_delay)
return self.command('SP', 0, delay)