from __future__ import division from itertools import groupby from PIL import Image Image.MAX_IMAGE_PIXELS = 1000000000 import axi import math import numpy as np import sys LNG1 = -125 LNG2 = -100 LAT1 = 49 LAT2 = 31 WIDTH = 13 HEIGHT = 8.5 LANDSCAPE = True ROWS = LAT1 - LAT2 if not LANDSCAPE: WIDTH, HEIGHT = HEIGHT, WIDTH def remove_flats(path): # return [list(path)] paths = [] for k, g in groupby(path, lambda p: p[1] > 0): if k: paths.append(list(g)) return paths def crop(im): w, h = im.size lng1 = LNG1 + 180 lng2 = LNG2 + 180 lat1 = 90 - LAT1 lat2 = 90 - LAT2 pix_per_lng = int(w / 360) pix_per_lat = int(h / 180) x1 = lng1 * pix_per_lng x2 = lng2 * pix_per_lng y1 = lat1 * pix_per_lat y2 = lat2 * pix_per_lat return im.crop((x1, y1, x2, y2)) def circle(cx, cy, r, n): points = [] for i in range(n + 1): a = 2 * math.pi * i / n x = cx + math.cos(a) * r y = cy + math.sin(a) * r points.append((x, y)) return points def lat_label(text, y): d = axi.Drawing(axi.text(text, axi.FUTURAL)) d = d.scale_to_fit_height(0.1) d = d.move(WIDTH + 1 / 8, y, 0, 1) # d.paths.append(circle(12.125 + d.width + 1 / 16, y - d.height, 1 / 48, 36)) d = d.join_paths(0.01) d = d.simplify_paths(0.001) paths = d.paths # paths.append([(WIDTH, y), (WIDTH + 1 / 16, y)]) return paths def lng_label(text, x): d = axi.Drawing(axi.text(text, axi.FUTURAL)) d = d.scale_to_fit_height(0.1) d = d.move(x, HEIGHT + 0.125, 0.5, 1) # d.paths.append(circle(x + d.width / 2 + 1 / 16, 8.5 + 0.125 - d.height, 1 / 48, 36)) d = d.join_paths(0.01) d = d.simplify_paths(0.001) paths = d.paths paths.append([(x, HEIGHT - 1 / 8), (x, HEIGHT - 1 / 16)]) return paths def vertical_stack(ds, spacing=0): result = axi.Drawing() y = 0 for d in ds: d = d.origin().translate(-d.width / 2, y) result.add(d) y += d.height + spacing return result def title(): d = axi.Drawing(axi.text('Topography of the Western United States', axi.FUTURAM)) d = d.scale_to_fit_height(0.25) d = d.join_paths(0.01) d = d.simplify_paths(0.001) return d def main(): paths = [] im = Image.open(sys.argv[1]) im = im.convert('L') im = crop(im) # im.save('crop.png') print im.size w, h = im.size data = np.asarray(im) data = data / np.amax(data) # data = data ** 0.5 lines_per_row = int(h / ROWS) for j in range(0, ROWS, 1): y0 = j * lines_per_row y1 = y0 + lines_per_row d = data[y0:y1] for q in range(0, 101, 25): print j, q values = np.percentile(d, q, axis=0) * 1.2 path = enumerate(values) for path in remove_flats(path): x = np.array([p[0] for p in path]) * WIDTH / w y = (j - np.array([p[1] for p in path])) * HEIGHT / ROWS path = zip(x, y) path = axi.simplify_paths([path], 0.005)[0] paths.append(path) lat = LAT1 + (LAT2 - LAT1) * j / (ROWS) paths.extend(lat_label('%g' % lat, j * HEIGHT / ROWS)) for lng in range(LNG1, LNG2 + 1): x = (lng - LNG1) / (LNG2 - LNG1) * WIDTH paths.extend(lng_label('%g' % abs(lng), x)) d = axi.Drawing(paths) print len(d.paths) print 'joining paths' d = d.join_paths(0.01) print len(d.paths) print 'sorting paths' d = d.sort_paths() print 'joining paths' d = d.join_paths(0.01) print len(d.paths) d = vertical_stack([title(), d], 0.25) # d = d.rotate(180) d = d.rotate_and_scale_to_fit(12, 8.5, step=90) im = d.render( scale=109 * 1, line_width=0.3/25.4, )#show_axi_bounds=False, use_axi_bounds=False) im.write_to_png('out.png') # d = d.rotate_and_scale_to_fit(12, 8.5, step=90) d.dump('out.axi') if __name__ == '__main__': main()