growth
This commit is contained in:
parent
a3176c67d8
commit
fe7cbed22f
|
@ -0,0 +1,145 @@
|
||||||
|
import axi
|
||||||
|
import heapq
|
||||||
|
import layers
|
||||||
|
import random
|
||||||
|
|
||||||
|
from collections import defaultdict
|
||||||
|
from math import pi, sin, cos, hypot, floor
|
||||||
|
from shapely.geometry import LineString
|
||||||
|
|
||||||
|
W, H = axi.A3_SIZE
|
||||||
|
|
||||||
|
def make_layer():
|
||||||
|
x = layers.Noise(8).add(layers.Constant(0.6)).clamp()
|
||||||
|
x = x.translate(random.random() * 1000, random.random() * 1000)
|
||||||
|
x = x.scale(0.25, 0.25)
|
||||||
|
x = x.power(1.5)
|
||||||
|
# x = x.subtract(layers.Distance(W / 2, H / 2, min(W, H) / 2, 4))
|
||||||
|
return x
|
||||||
|
|
||||||
|
class Grid(object):
|
||||||
|
def __init__(self, r):
|
||||||
|
self.r = r
|
||||||
|
self.size = r / 2 ** 0.5
|
||||||
|
self.points = {}
|
||||||
|
self.lines = {}
|
||||||
|
|
||||||
|
def normalize(self, x, y):
|
||||||
|
i = int(floor(x / self.size))
|
||||||
|
j = int(floor(y / self.size))
|
||||||
|
return (i, j)
|
||||||
|
|
||||||
|
def nearby(self, x, y):
|
||||||
|
points = []
|
||||||
|
lines = []
|
||||||
|
i, j = self.normalize(x, y)
|
||||||
|
for p in range(i - 2, i + 3):
|
||||||
|
for q in range(j - 2, j + 3):
|
||||||
|
if (p, q) in self.points:
|
||||||
|
points.append(self.points[(p, q)])
|
||||||
|
if (p, q) in self.lines:
|
||||||
|
lines.append(self.lines[(p, q)])
|
||||||
|
return points, lines
|
||||||
|
|
||||||
|
def insert(self, x, y, line=None):
|
||||||
|
points, lines = self.nearby(x, y)
|
||||||
|
for bx, by in points:
|
||||||
|
if hypot(x - bx, y - by) < self.r:
|
||||||
|
return False
|
||||||
|
i, j = self.normalize(x, y)
|
||||||
|
if line:
|
||||||
|
for other in lines:
|
||||||
|
if line.crosses(other):
|
||||||
|
return False
|
||||||
|
self.lines[(i, j)] = line
|
||||||
|
self.points[(i, j)] = (x, y)
|
||||||
|
return True
|
||||||
|
|
||||||
|
def remove(self, x, y):
|
||||||
|
i, j = self.normalize(x, y)
|
||||||
|
self.points.pop((i, j))
|
||||||
|
self.lines.pop((i, j))
|
||||||
|
|
||||||
|
def new_angle(a, d):
|
||||||
|
if d < 0.1:
|
||||||
|
return random.random() * 2 * pi
|
||||||
|
else:
|
||||||
|
return random.gauss(a, pi / 12)
|
||||||
|
|
||||||
|
def poisson_disc(layer, x1, y1, x2, y2, r, n):
|
||||||
|
grid = Grid(r)
|
||||||
|
active = []
|
||||||
|
g = 0
|
||||||
|
while len(active) < 1:
|
||||||
|
# for i in range(1):
|
||||||
|
x = x1 + random.random() * (x2 - x1)
|
||||||
|
y = y1 + random.random() * (y2 - y1)
|
||||||
|
score = layer.get(x, y)
|
||||||
|
if score < 0.9:
|
||||||
|
continue
|
||||||
|
# x = (x1 + x2) / 2.0
|
||||||
|
# y = (y1 + y2) / 2.0
|
||||||
|
a = random.random() * 2 * pi
|
||||||
|
if grid.insert(x, y):
|
||||||
|
print(x, y)
|
||||||
|
heapq.heappush(active, (-score, x, y, a, 0, 0, g))
|
||||||
|
g += 1
|
||||||
|
pairs = []
|
||||||
|
while active:
|
||||||
|
ascore, ax, ay, aa, ai, ad, ag = active[0]
|
||||||
|
for i in range(n):
|
||||||
|
a = new_angle(aa, ad)
|
||||||
|
d = random.random() * r + r
|
||||||
|
x = ax + cos(a) * d
|
||||||
|
y = ay + sin(a) * d
|
||||||
|
if x < x1 or y < y1 or x > x2 or y > y2:
|
||||||
|
continue
|
||||||
|
pair = ((ax, ay), (x, y))
|
||||||
|
line = LineString(pair)
|
||||||
|
if not grid.insert(x, y, line):
|
||||||
|
continue
|
||||||
|
score = layer.get(x, y)
|
||||||
|
# if score < 0.25:
|
||||||
|
# continue
|
||||||
|
if random.random() < 0.75 and random.random() ** 3 > score:
|
||||||
|
heapq.heappop(active)
|
||||||
|
break
|
||||||
|
pairs.append(pair)
|
||||||
|
heapq.heappush(active, (-score, x, y, a, ai + 1, ad + d, ag))
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
heapq.heappop(active)
|
||||||
|
return grid.points.values(), pairs
|
||||||
|
|
||||||
|
def make_path(pairs):
|
||||||
|
lookup = defaultdict(list)
|
||||||
|
for parent, child in pairs:
|
||||||
|
lookup[parent].append(child)
|
||||||
|
root = pairs[0][0]
|
||||||
|
path = []
|
||||||
|
stack = []
|
||||||
|
stack.append(root)
|
||||||
|
while stack:
|
||||||
|
point = stack[-1]
|
||||||
|
path.append(point)
|
||||||
|
if not lookup[point]:
|
||||||
|
stack.pop()
|
||||||
|
continue
|
||||||
|
child = lookup[point].pop()
|
||||||
|
stack.append(child)
|
||||||
|
return path
|
||||||
|
|
||||||
|
def main():
|
||||||
|
layer = make_layer()
|
||||||
|
layer.save('layer.png', 0, 0, W, H, 50)
|
||||||
|
points, pairs = poisson_disc(layer, 0, 0, W, H, 0.05, 8)
|
||||||
|
path = make_path(pairs)
|
||||||
|
d = axi.Drawing([path])
|
||||||
|
# d = d.rotate_and_scale_to_fit(W, H, step=90)
|
||||||
|
d = d.scale_to_fit(W, H)
|
||||||
|
d.dump('growth.axi')
|
||||||
|
d.render(bounds=(0, 0, W, H)).write_to_png('growth.png')
|
||||||
|
# axi.draw(d)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
|
@ -0,0 +1,143 @@
|
||||||
|
# from alpha_shape import alpha_shape
|
||||||
|
from math import hypot
|
||||||
|
from PIL import Image
|
||||||
|
import noise
|
||||||
|
|
||||||
|
class Layer(object):
|
||||||
|
def translate(self, x, y):
|
||||||
|
return Translate(self, x, y)
|
||||||
|
def scale(self, x, y):
|
||||||
|
return Scale(self, x, y)
|
||||||
|
def power(self, power):
|
||||||
|
return Power(self, power)
|
||||||
|
def add(self, other):
|
||||||
|
return Add(self, other)
|
||||||
|
def subtract(self, other):
|
||||||
|
return Subtract(self, other)
|
||||||
|
def multiply(self, other):
|
||||||
|
return Multiply(self, other)
|
||||||
|
def threshold(self, threshold):
|
||||||
|
return Threshold(self, threshold)
|
||||||
|
def clamp(self, lo=0, hi=1):
|
||||||
|
return Clamp(self, lo, hi)
|
||||||
|
def normalize(self, lo, hi, new_lo, new_hi):
|
||||||
|
return Normalize(self, lo, hi, new_lo, new_hi)
|
||||||
|
def filter_points(self, points, lo, hi):
|
||||||
|
return [(x, y) for x, y in points if lo <= self.get(x, y) < hi]
|
||||||
|
def alpha_shape(self, points, lo, hi, alpha):
|
||||||
|
points = self.filter_points(points, lo, hi)
|
||||||
|
return alpha_shape(points, alpha)
|
||||||
|
def save(self, path, x1, y1, x2, y2, scale=1, lo=0, hi=1):
|
||||||
|
w = int(round((x2 - x1) * scale))
|
||||||
|
h = int(round((y2 - y1) * scale))
|
||||||
|
data = bytearray(w * h)
|
||||||
|
for y in range(h):
|
||||||
|
for x in range(w):
|
||||||
|
sx = x1 + (x2 - x1) * x / (w - 1)
|
||||||
|
sy = y1 + (y2 - y1) * y / (h - 1)
|
||||||
|
v = (self.get(sx, sy) - lo) / (hi - lo)
|
||||||
|
v = max(0, min(255, int(v * 255)))
|
||||||
|
data[y*w+x] = v
|
||||||
|
# for y in range(y1, y2):
|
||||||
|
# for x in range(x1, x2):
|
||||||
|
# v = (self.get(x, y) - lo) / (hi - lo)
|
||||||
|
# v = max(0, min(255, int(v * 255)))
|
||||||
|
# data[y*w+x] = v
|
||||||
|
im = Image.frombytes('L', (w, h), bytes(data))
|
||||||
|
im.save(path, 'png')
|
||||||
|
|
||||||
|
class Constant(Layer):
|
||||||
|
def __init__(self, value):
|
||||||
|
self.value = value
|
||||||
|
def get(self, x, y):
|
||||||
|
return self.value
|
||||||
|
|
||||||
|
class Noise(Layer):
|
||||||
|
def __init__(self, octaves=1):
|
||||||
|
self.octaves = octaves
|
||||||
|
def get(self, x, y):
|
||||||
|
return noise.snoise2(x, y, self.octaves)
|
||||||
|
|
||||||
|
class Translate(Layer):
|
||||||
|
def __init__(self, layer, x, y):
|
||||||
|
self.layer = layer
|
||||||
|
self.x = x
|
||||||
|
self.y = y
|
||||||
|
def get(self, x, y):
|
||||||
|
return self.layer.get(self.x + x, self.y + y)
|
||||||
|
|
||||||
|
class Scale(Layer):
|
||||||
|
def __init__(self, layer, x, y):
|
||||||
|
self.layer = layer
|
||||||
|
self.x = x
|
||||||
|
self.y = y
|
||||||
|
def get(self, x, y):
|
||||||
|
return self.layer.get(self.x * x, self.y * y)
|
||||||
|
|
||||||
|
class Power(Layer):
|
||||||
|
def __init__(self, layer, power):
|
||||||
|
self.layer = layer
|
||||||
|
self.power = power
|
||||||
|
def get(self, x, y):
|
||||||
|
return self.layer.get(x, y) ** self.power
|
||||||
|
|
||||||
|
class Add(Layer):
|
||||||
|
def __init__(self, a, b):
|
||||||
|
self.a = a
|
||||||
|
self.b = b
|
||||||
|
def get(self, x, y):
|
||||||
|
return self.a.get(x, y) + self.b.get(x, y)
|
||||||
|
|
||||||
|
class Subtract(Layer):
|
||||||
|
def __init__(self, a, b):
|
||||||
|
self.a = a
|
||||||
|
self.b = b
|
||||||
|
def get(self, x, y):
|
||||||
|
return self.a.get(x, y) - self.b.get(x, y)
|
||||||
|
|
||||||
|
class Multiply(Layer):
|
||||||
|
def __init__(self, a, b):
|
||||||
|
self.a = a
|
||||||
|
self.b = b
|
||||||
|
def get(self, x, y):
|
||||||
|
return self.a.get(x, y) * self.b.get(x, y)
|
||||||
|
|
||||||
|
class Threshold(Layer):
|
||||||
|
def __init__(self, layer, threshold):
|
||||||
|
self.layer = layer
|
||||||
|
self.threshold = threshold
|
||||||
|
def get(self, x, y):
|
||||||
|
return 0 if self.layer.get(x, y) < self.threshold else 1
|
||||||
|
|
||||||
|
class Clamp(Layer):
|
||||||
|
def __init__(self, layer, lo=0, hi=1):
|
||||||
|
self.layer = layer
|
||||||
|
self.lo = lo
|
||||||
|
self.hi = hi
|
||||||
|
def get(self, x, y):
|
||||||
|
v = self.layer.get(x, y)
|
||||||
|
v = min(v, self.hi)
|
||||||
|
v = max(v, self.lo)
|
||||||
|
return v
|
||||||
|
|
||||||
|
class Normalize(Layer):
|
||||||
|
def __init__(self, layer, lo, hi, new_lo, new_hi):
|
||||||
|
self.layer = layer
|
||||||
|
self.lo = lo
|
||||||
|
self.hi = hi
|
||||||
|
self.new_lo = new_lo
|
||||||
|
self.new_hi = new_hi
|
||||||
|
def get(self, x, y):
|
||||||
|
v = self.layer.get(x, y)
|
||||||
|
p = (v - self.lo) / (self.hi - self.lo)
|
||||||
|
v = self.new_lo + p * (self.new_hi - self.new_lo)
|
||||||
|
return v
|
||||||
|
|
||||||
|
class Distance(Layer):
|
||||||
|
def __init__(self, x, y, maximum, gamma=1):
|
||||||
|
self.x = x
|
||||||
|
self.y = y
|
||||||
|
self.maximum = maximum
|
||||||
|
self.gamma = gamma
|
||||||
|
def get(self, x, y):
|
||||||
|
return (hypot(x - self.x, y - self.y) / self.maximum) ** self.gamma
|
Loading…
Reference in New Issue