jerk planning

This commit is contained in:
Michael Fogleman 2017-01-04 15:38:23 -05:00
parent 33c9fbfb5a
commit 90f66cb124
3 changed files with 229 additions and 161 deletions

View File

@ -3,6 +3,7 @@ from __future__ import division
from collections import namedtuple
from itertools import groupby
from math import sqrt, hypot
import numpy
EPS = 1e-9
@ -65,6 +66,19 @@ def trapezoid(s, vi, vmax, vf, a, p1, p4):
p3 = p1.lerps(p4, s - s3)
return Trapezoid(s1, s2, s3, t1, t2, t3, p1, p2, p3, p4)
def acceleration_duration(s, vi, a):
# compute the amount of time to travel distance s while accelerating
vf = sqrt(vi * vi + 2 * a * s)
t = (vf - vi) / a
return t
def jerk_duration(s, vi, ai, j):
# compute the amount of time to travel distance s while jerking
# TODO: remove numpy dependency?
roots = numpy.roots([j / 6, ai / 2, vi, -s])
roots = roots.real[abs(roots.imag) < EPS]
return min(x for x in roots if x > 0)
def corner_velocity(s1, s2, vmax, a, delta):
# compute a maximum velocity at the corner of two segments
# https://onehossshay.wordpress.com/2011/09/24/improving_grbl_cornering_algorithm/
@ -77,41 +91,54 @@ def corner_velocity(s1, s2, vmax, a, delta):
v = sqrt((a * delta * sine) / (1 - sine))
return min(v, vmax)
class Piece(object):
# a piece is a constant acceleration for a duration of time
# the planner generates these pieces
def __init__(self, p1, p2, v1, acceleration, duration):
self.p1 = p1
self.p2 = p2
self.v1 = v1
self.v2 = v1 + acceleration * duration
self.acceleration = acceleration
self.duration = duration
Instant = namedtuple('Instant', ['t', 'p', 's', 'v', 'a', 'j'])
def point(self, t):
return self.p1.lerps(self.p2, self.distance(t))
def distance(self, t):
return self.v1 * t + self.acceleration * t * t / 2
def velocity(self, t):
return self.v1 + self.acceleration * t
class JerkPiece(object):
class Block(object):
# a constant jerk for a duration of time
def __init__(self, p1, p2, v1, a1, jerk, duration):
def __init__(self, j, t, vi, ai, p1, p2):
self.j = j
self.t = t
# TODO: si?
self.vi = vi
self.ai = ai
self.p1 = p1
self.p2 = p2
self.v1 = v1
self.v2 = v1 + a1 * duration + jerk * duration * duration / 2
self.a1 = a1
self.a2 = a1 + jerk * duration
self.jerk = jerk
self.duration = duration
self.s = p1.distance(p2)
self.vf = vi + ai * t + j * t * t / 2
self.af = ai + j * t
def split(self, t):
x = self.instant(t)
b1 = Block(self.j, t, self.vi, self.ai, self.p1, x.p)
b2 = Block(self.j, self.t - t, x.v, x.a, x.p, self.p2)
return b1, b2
@property
def initial(self):
return self.instant(0)
@property
def final(self):
return self.instant(self.t)
def instant(self, t):
t2 = t * t
t3 = t2 * t
t2_2 = t2 / 2
t3_6 = t3 / 6
j = self.j
a = self.ai + self.j * t
v = self.vi + self.ai * t + self.j * t2_2
s = self.vi * t + self.ai * t2_2 + self.j * t3_6
p = self.p1.lerps(self.p2, s)
return Instant(t, p, s, v, a, j)
def accelerate(a, t, vi, p1, p2):
return Block(0, t, vi, a, p1, p2)
class Segment(object):
# a segment is a line segment between two points, which will be broken
# up into pieces by the planner
# up into blocks by the planner
def __init__(self, p1, p2):
self.p1 = p1
self.p2 = p2
@ -119,126 +146,168 @@ class Segment(object):
self.vector = p2.sub(p1).normalize()
self.max_entry_velocity = 0
self.entry_velocity = 0
self.pieces = []
self.blocks = []
class Planner(object):
# a planner has a constant acceleration and a max crusing velocity
def __init__(self, acceleration, max_velocity, corner_factor):
def __init__(self, acceleration, max_velocity, corner_factor, jerk_factor):
self.acceleration = acceleration
self.max_velocity = max_velocity
self.corner_factor = corner_factor
self.jerk_factor = 0.5
self.jerk_factor = jerk_factor
def plan(self, points):
a = self.acceleration
vmax = self.max_velocity
cf = self.corner_factor
return constant_acceleration_plan(points, a, vmax, cf)
# make sure points are Point objects
points = [Point(x, y) for x, y in points]
# create segments for each consecutive pair of points
segments = [Segment(p1, p2) for p1, p2 in zip(points, points[1:])]
# compute a max_entry_velocity for each segment
# based on the angle formed by the two segments at the vertex
for s1, s2 in zip(segments, segments[1:]):
v = corner_velocity(s1, s2, vmax, a, self.corner_factor)
s2.max_entry_velocity = v
# add a dummy segment at the end to force a final velocity of zero
segments.append(Segment(points[-1], points[-1]))
# loop over segments
i = 0
while i < len(segments) - 1:
# pull out some variables
segment = segments[i]
next_segment = segments[i + 1]
s = segment.length
vi = segment.entry_velocity
vexit = next_segment.max_entry_velocity
p1 = segment.p1
p2 = segment.p2
# determine which profile to use for this segment
# TODO: rearrange these cases for better flow?
# accelerate? /
vf = sqrt(vi * vi + 2 * a * s)
if vf <= vexit:
t = (vf - vi) / a
segment.pieces = [
Piece(p1, p2, vi, a, t),
]
next_segment.entry_velocity = vf
i += 1
continue
# accelerate, cruise, decelerate? /---\
m = triangle(s, vi, vexit, a, p1, p2)
if m.s1 > -EPS and m.s2 > -EPS and m.vmax >= vmax:
z = trapezoid(s, vi, vmax, vexit, a, p1, p2)
segment.pieces = [
Piece(z.p1, z.p2, vi, a, z.t1),
Piece(z.p2, z.p3, vmax, 0, z.t2),
Piece(z.p3, z.p4, vmax, -a, z.t3),
]
next_segment.entry_velocity = vexit
i += 1
continue
# accelerate, decelerate? /\
if m.s1 > -EPS and m.s2 > -EPS:
segment.pieces = [
Piece(m.p1, m.p2, vi, a, m.t1),
Piece(m.p2, m.p3, m.vmax, -a, m.t2),
]
next_segment.entry_velocity = vexit
i += 1
continue
# too fast! update max_entry_velocity and backtrack
segment.max_entry_velocity = sqrt(vexit * vexit + 2 * a * s)
i -= 1 # TODO: support non-zero initial velocity?
# concatenate all of the pieces
pieces = []
for segment in segments:
pieces.extend(segment.pieces)
# filter out zero-duration pieces and return
pieces = [x for x in pieces if x.duration > EPS]
return pieces
def smooth(self, pieces):
result = []
for a, g in groupby(pieces, key=lambda x: x.acceleration):
result.extend(self.smooth_group(list(g), a))
return result
def smooth_group(self, pieces, a):
if abs(a) < EPS:
return pieces # TODO: convert to jerk pieces
t = sum(x.duration for x in pieces)
# vi = pieces[0].v1
# vf = pieces[-1].v2
# s = (vf + vi) / 2 * t
def jerk_plan(self, points):
blocks = self.plan(points)
jf = self.jerk_factor
t1 = t * jf
t2 = t - 2 * t1
amax = a / (1 - jf)
jerk = amax / t1
# jerk for t1, a = 0 to amax
# accel for t2, a = amax
# -jerk for t1, a = amax to 0
# blocks = [
# JerkBlock(0, jerk, t1),
# JerkBlock(amax, jerk, t2),
# JerkBlock(0, jerk, t1),
# ]
# s = vi * t + ai * t * t / 2 + j * t * t * t / 6
print a, len(pieces), t, jerk, amax
return pieces
return constant_jerk_plan(blocks, jf)
def constant_acceleration_plan(points, a, vmax, cf):
# make sure points are Point objects
points = [Point(x, y) for x, y in points]
# create segments for each consecutive pair of points
segments = [Segment(p1, p2) for p1, p2 in zip(points, points[1:])]
# compute a max_entry_velocity for each segment
# based on the angle formed by the two segments at the vertex
for s1, s2 in zip(segments, segments[1:]):
v = corner_velocity(s1, s2, vmax, a, cf)
s2.max_entry_velocity = v
# add a dummy segment at the end to force a final velocity of zero
segments.append(Segment(points[-1], points[-1]))
# loop over segments
i = 0
while i < len(segments) - 1:
# pull out some variables
segment = segments[i]
next_segment = segments[i + 1]
s = segment.length
vi = segment.entry_velocity
vexit = next_segment.max_entry_velocity
p1 = segment.p1
p2 = segment.p2
# determine which profile to use for this segment
# TODO: rearrange these cases for better flow?
# accelerate? /
vf = sqrt(vi * vi + 2 * a * s)
if vf <= vexit:
t = (vf - vi) / a
segment.blocks = [
accelerate(a, t, vi, p1, p2),
]
next_segment.entry_velocity = vf
i += 1
continue
# accelerate, cruise, decelerate? /---\
m = triangle(s, vi, vexit, a, p1, p2)
if m.s1 > -EPS and m.s2 > -EPS and m.vmax >= vmax:
z = trapezoid(s, vi, vmax, vexit, a, p1, p2)
segment.blocks = [
accelerate(a, z.t1, vi, z.p1, z.p2),
accelerate(0, z.t2, vmax, z.p2, z.p3),
accelerate(-a, z.t3, vmax, z.p3, z.p4),
]
next_segment.entry_velocity = vexit
i += 1
continue
# accelerate, decelerate? /\
if m.s1 > -EPS and m.s2 > -EPS:
segment.blocks = [
accelerate(a, m.t1, vi, m.p1, m.p2),
accelerate(-a, m.t2, m.vmax, m.p2, m.p3),
]
next_segment.entry_velocity = vexit
i += 1
continue
# too fast! update max_entry_velocity and backtrack
segment.max_entry_velocity = sqrt(vexit * vexit + 2 * a * s)
i -= 1 # TODO: support non-zero initial velocity?
# concatenate all of the blocks
blocks = []
for segment in segments:
blocks.extend(segment.blocks)
# filter out zero-duration blocks and return
blocks = [x for x in blocks if x.t > EPS]
return blocks
def constant_jerk_plan(blocks, jf):
# TODO: ignore blocks that already have a jerk?
result = []
for a, g in groupby(blocks, key=lambda x: x.ai):
result.extend(_constant_jerk_plan(list(g), jf, a))
return result
def _constant_jerk_plan(blocks, jf, a):
if abs(a) < EPS:
return blocks
result = []
duration = sum(x.t for x in blocks)
t1 = duration * jf
t2 = duration - 2 * t1
amax = a / (1 - jf)
j = amax / t1
vi = blocks[0].vi
ai = 0
s1 = vi * t1 + ai * t1 * t1 / 2 + j * t1 * t1 * t1 / 6
v1 = vi + ai * t1 + j * t1 * t1 / 2
s2 = v1 * t2 + amax * t2 * t2 / 2
blocks1, temp = split_blocks(blocks, s1)
blocks2, blocks3 = split_blocks(temp, s2)
# jerk to a = amax
for b in blocks1:
t = jerk_duration(b.s, vi, ai, j)
block = Block(j, t, vi, ai, b.p1, b.p2)
result.append(block)
vi = block.vf
ai = block.af
# accelerate at amax
for b in blocks2:
t = acceleration_duration(b.s, vi, ai)
block = Block(0, t, vi, ai, b.p1, b.p2)
result.append(block)
vi = block.vf
ai = block.af
# jerk to a = 0
for b in blocks3:
t = jerk_duration(b.s, vi, ai, -j)
block = Block(-j, t, vi, ai, b.p1, b.p2)
result.append(block)
vi = block.vf
ai = block.af
return result
def split_blocks(blocks, s):
before = []
after = []
total = 0
for b in blocks:
s1 = total
s2 = total + b.s
if s2 < s + EPS:
before.append(b)
elif s1 > s - EPS:
after.append(b)
else:
t = acceleration_duration(s - s1, b.vi, b.ai)
b1, b2 = b.split(t)
before.append(b1)
after.append(b2)
total = s2
return before, after
# vf = vi + a * t
# s = (vf + vi) / 2 * t
@ -249,21 +318,21 @@ class Planner(object):
# vf = vi + ai * t + j * t * t / 2
# sf = si + vi * t + ai * t * t / 2 + j * t * t * t / 6
# def chop_piece(p, dt):
# def chop_block(p, dt):
# result = []
# t = 0
# while t < p.duration:
# while t < p.t:
# t1 = t
# t2 = min(t + dt, p.duration)
# t2 = min(t + dt, p.t)
# p1 = p.point(t1)
# p2 = p.point(t2)
# v = (p.velocity(t1) + p.velocity(t2)) / 2
# result.append(Piece(p1, p2, v, 0, t2 - t1))
# result.append(accelerate(0, t2 - t1, v, p1, p2))
# t += dt
# return result
# def chop_pieces(pieces, dt):
# def chop_blocks(blocks, dt):
# result = []
# for piece in pieces:
# result.extend(chop_piece(piece, dt))
# for block in blocks:
# result.extend(chop_block(block, dt))
# return result

View File

@ -15,16 +15,14 @@ def main():
points = [(-100, -100), (100, -100)] + points + [(100, 100), (-100, 100), (-100, -100)]
for r in range(20, 100, 20):
points = circle(0, 0, r, 90) + points
planner = Planner(acceleration=50, max_velocity=200, corner_factor=1)
pieces = planner.plan(points)
# print 'var PIECES = ['
# for p in pieces:
# record = (p.p1.x, p.p1.y, p.p2.x, p.p2.y, p.acceleration, p.duration)
# print '[%s],' % ','.join(map(str, record))
# print '];'
pieces = planner.smooth(pieces)
# for p in pieces:
# print p.acceleration, p.duration
planner = Planner(
acceleration=100, max_velocity=200, corner_factor=1, jerk_factor=0.25)
blocks = planner.jerk_plan(points)
print 'var PIECES = ['
for b in blocks:
record = (b.p1.x, b.p1.y, b.p2.x, b.p2.y, b.j, b.t)
print '[%s],' % ','.join(map(str, record))
print '];'
if __name__ == '__main__':
main()

View File

@ -15,16 +15,17 @@ def main():
points = [(-100, -100), (100, -100)] + points + [(100, 100), (-100, 100), (-100, -100)]
for r in range(20, 100, 20):
points = circle(0, 0, r, 90) + points
planner = Planner(acceleration=50, max_velocity=200, corner_factor=1)
pieces = planner.plan(points)
planner = Planner(
acceleration=50, max_velocity=200, corner_factor=1, jerk_factor=0.5)
blocks = planner.plan(points)
print 'var PIECES = ['
for p in pieces:
record = (p.p1.x, p.p1.y, p.p2.x, p.p2.y, p.acceleration, p.duration)
for b in blocks:
record = (b.p1.x, b.p1.y, b.p2.x, b.p2.y, b.ai, b.t)
print '[%s],' % ','.join(map(str, record))
print '];'
# pieces = planner.smooth(pieces)
# for p in pieces:
# print p.acceleration, p.duration
# blocks = planner.smooth(blocks)
# for b in blocks:
# print b.t, b.t
if __name__ == '__main__':
main()