308 lines
7.7 KiB
Python
308 lines
7.7 KiB
Python
import sys
|
|
import cv2
|
|
import numpy as np
|
|
import math
|
|
from os.path import exists, basename
|
|
from common import image_resize, display, normalize_angle, read_json
|
|
from json import dumps
|
|
|
|
DEBUG = True
|
|
registrationMarkThreshold = 0.65
|
|
|
|
#clockwise from top left
|
|
order = [ 0, 2, 3, 5, 4, 1 ]
|
|
matchMethods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
|
|
|
|
#
|
|
# CALIBRATE
|
|
#
|
|
|
|
if len(sys.argv) < 2:
|
|
print('Please provide path of normalized scan to build template from to')
|
|
exit(1)
|
|
|
|
|
|
normalImage = sys.argv[-1]
|
|
|
|
if not exists(normalImage) :
|
|
print('Normalized scan does not exist, please provide one that does')
|
|
exit(2)
|
|
|
|
normalText = normalImage + '.json'
|
|
|
|
if not exists(normalText) :
|
|
print('Corresponding normalized scan text does not exist, please generate one')
|
|
exit(3)
|
|
|
|
|
|
print(f'Building template from scan {basename(normalImage)}')
|
|
|
|
registrationMark = cv2.imread('./registrationMark.png', 0)
|
|
w, h = registrationMark.shape[:2]
|
|
holePunches = read_json(normalText)
|
|
original = cv2.imread(normalImage)
|
|
img = original.copy()
|
|
height, width = img.shape[:2]
|
|
orientation = height > width
|
|
marks = []
|
|
|
|
if not orientation :
|
|
print(f'Scan is not in portrait mode, exiting...')
|
|
exit(3)
|
|
|
|
#print(holePunches)
|
|
|
|
def get_distance(ref, point):
|
|
# print('ref: {} , point: {}'.format(ref, point))
|
|
x1, y1 = ref[0], ref[1]
|
|
x2, y2 = point[0], point[1]
|
|
return math.hypot(x2 - x1, y2 - y1)
|
|
|
|
def group_points(points):
|
|
groups = {}
|
|
groupnum = 0
|
|
while len(points) > 1:
|
|
groupnum += 1
|
|
key = str(groupnum)
|
|
groups[key] = []
|
|
ref = points.pop(0)
|
|
for i, point in enumerate(points):
|
|
d = get_distance(ref, point)
|
|
if d < 30:
|
|
groups[key].append(points[i])
|
|
points[i] = None
|
|
points = list(filter(lambda x: x is not None, points))
|
|
return list([[int(np.mean(list([x[0] for x in groups[arr]]))), int(np.mean(list([x[1] for x in groups[arr]])))] for arr in groups])
|
|
|
|
def find_closest (pt, pts) :
|
|
return pts[min(range(len(pts)), key = lambda i: get_distance(pts[i], pt))]
|
|
|
|
def find_in_half (half) :
|
|
halfGray = cv2.cvtColor(half, cv2.COLOR_BGR2GRAY)
|
|
res = cv2.matchTemplate(halfGray, registrationMark, cv2.TM_CCOEFF_NORMED)
|
|
threshold = registrationMarkThreshold
|
|
loc = np.where( res >= threshold)
|
|
for pt in zip(*loc[::-1]):
|
|
cv2.rectangle(half, pt, (pt[0] + w, pt[1] + h), (0,0,255), 2)
|
|
return list(zip(*loc[::-1]))
|
|
|
|
ttly = holePunches['0']['y']-round(height*0.05)
|
|
ttlx = holePunches['0']['x']
|
|
topHalf = img[ttly:holePunches['1']['y']+round(height*0.1), ttlx:holePunches['2']['x']]
|
|
while True:
|
|
topHalfPts = find_in_half(topHalf)
|
|
if len(topHalfPts) < 12 :
|
|
registrationMarkThreshold -= 0.05
|
|
print(f'Found only {len(topHalfPts)}, decreasing threshold to {registrationMarkThreshold}')
|
|
elif len(topHalfPts) > 12 :
|
|
registrationMarkThreshold += 0.05
|
|
print(f'Found {len(topHalfPts)}, increasing threshold to {registrationMarkThreshold}')
|
|
else :
|
|
break
|
|
|
|
thpts = group_points(topHalfPts)
|
|
for pt in thpts :
|
|
#print(f'{ttlx + pt[0]},{ttly + pt[1]}')
|
|
marks.append((ttlx + pt[0] + round(w / 2), ttly + pt[1] + round(h / 2),))
|
|
|
|
print(f'Found {len(thpts)} points')
|
|
#display(topHalf)
|
|
|
|
btly = holePunches['4']['y']-round(height*0.1)
|
|
btlx = holePunches['3']['x']
|
|
bottomHalf = img[btly:holePunches['5']['y']+round(height*0.05), btlx:holePunches['4']['x']]
|
|
bottomHalfPts = find_in_half(bottomHalf)
|
|
bhpts = group_points(bottomHalfPts)
|
|
for pt in bhpts :
|
|
#print(f'{btlx + pt[0]},{btly + pt[1]}')
|
|
marks.append((btlx + pt[0] + round(w / 2), btly + pt[1] + round(h / 2), ))
|
|
|
|
clean = original.copy()
|
|
for pt in marks :
|
|
#print(pt)
|
|
cv2.circle(clean, pt, 50, (0,0,255), -1)
|
|
|
|
print(f'Found {len(bhpts)} points')
|
|
|
|
if len(marks) != 16 :
|
|
print(f'{len(marks)} != 16 marks')
|
|
exit(1)
|
|
|
|
##
|
|
# TOP LEFT
|
|
##
|
|
|
|
topLeftTR = find_closest((0,0,), marks)
|
|
#print(topLeftTR)
|
|
topLeftSorted = sorted(marks, key=lambda e: get_distance(e, topLeftTR))
|
|
topLeftSorted.remove(topLeftTR)
|
|
|
|
if abs(topLeftSorted[0][1] - topLeftTR[1]) < abs(topLeftSorted[1][1] - topLeftTR[1]) :
|
|
topLeftBR = topLeftSorted[0]
|
|
else :
|
|
topLeftBR = topLeftSorted[1]
|
|
|
|
topLeftTL = topLeftSorted[2]
|
|
topLeftBL = topLeftSorted[4]
|
|
|
|
if DEBUG :
|
|
cv2.line(clean, topLeftTR, topLeftBR, (0,0,255,), 3)
|
|
cv2.line(clean, topLeftTR, topLeftTL, (0,0,255,), 3)
|
|
cv2.line(clean, topLeftBR, topLeftBL, (0,0,255,), 3)
|
|
cv2.line(clean, topLeftTL, topLeftBL, (0,0,255,), 3)
|
|
|
|
##
|
|
# TOP RIGHT
|
|
##
|
|
|
|
topRightTL = find_closest((width,0,), marks)
|
|
#print(topRightTL)
|
|
|
|
topRightSorted = sorted(topLeftSorted, key=lambda e: get_distance(e, topRightTL))
|
|
topRightSorted.remove(topRightTL)
|
|
topRightSorted.remove(topLeftBR)
|
|
topRightSorted.remove(topLeftTL)
|
|
topRightSorted.remove(topLeftBL)
|
|
|
|
topRightBL = topRightSorted[0]
|
|
topRightTR = topRightSorted[1]
|
|
if abs(topRightTL[0] - topRightSorted[2][0]) > abs(topRightTL[0] - topRightSorted[3][0]) :
|
|
topRightBR = topRightSorted[2]
|
|
else :
|
|
topRightBR = topRightSorted[3]
|
|
|
|
if DEBUG :
|
|
cv2.line(clean, topRightTR, topRightBR, (0,0,255,), 3)
|
|
cv2.line(clean, topRightTR, topRightTL, (0,0,255,), 3)
|
|
cv2.line(clean, topRightBR, topRightBL, (0,0,255,), 3)
|
|
cv2.line(clean, topRightTL, topRightBL, (0,0,255,), 3)
|
|
|
|
##
|
|
# BOTTOM LEFT
|
|
##
|
|
|
|
bottomLeftTL = find_closest((0,height,), marks)
|
|
|
|
bottomLeftSorted = sorted(topRightSorted, key=lambda e: get_distance(e, bottomLeftTL))
|
|
bottomLeftSorted.remove(bottomLeftTL)
|
|
bottomLeftSorted.remove(topRightBR)
|
|
bottomLeftSorted.remove(topRightTR)
|
|
bottomLeftSorted.remove(topRightBL)
|
|
|
|
bottomLeftBL = bottomLeftSorted[0]
|
|
bottomLeftTR = bottomLeftSorted[2]
|
|
bottomLeftBR = bottomLeftSorted[3]
|
|
|
|
if DEBUG :
|
|
cv2.line(clean, bottomLeftTR, bottomLeftBR, (0,0,255,), 3)
|
|
cv2.line(clean, bottomLeftTR, bottomLeftTL, (0,0,255,), 3)
|
|
cv2.line(clean, bottomLeftBR, bottomLeftBL, (0,0,255,), 3)
|
|
cv2.line(clean, bottomLeftTL, bottomLeftBL, (0,0,255,), 3)
|
|
|
|
##
|
|
# BOTTOM RIGHT
|
|
##
|
|
|
|
bottomRightTR = find_closest((width,height,), marks)
|
|
|
|
bottomRightSorted = sorted(bottomLeftSorted, key=lambda e: get_distance(e, bottomRightTR))
|
|
bottomRightSorted.remove(bottomRightTR)
|
|
bottomRightSorted.remove(bottomLeftBR)
|
|
bottomRightSorted.remove(bottomLeftTR)
|
|
bottomRightSorted.remove(bottomLeftBL)
|
|
|
|
bottomRightBR = bottomRightSorted[0]
|
|
bottomRightTL = bottomRightSorted[1]
|
|
bottomRightBL = bottomRightSorted[2]
|
|
|
|
if DEBUG :
|
|
cv2.line(clean, bottomRightTR, bottomRightBR, (0,0,255,), 3)
|
|
cv2.line(clean, bottomRightTR, bottomRightTL, (0,0,255,), 3)
|
|
cv2.line(clean, bottomRightBR, bottomRightBL, (0,0,255,), 3)
|
|
cv2.line(clean, bottomRightTL, bottomRightBL, (0,0,255,), 3)
|
|
|
|
jsonOut = {
|
|
'width' : width,
|
|
'height' : height,
|
|
'holePunches' : holePunches,
|
|
'0' : {
|
|
'0' : {
|
|
'x' : bottomLeftTL[0],
|
|
'y' : bottomLeftTL[1]
|
|
},
|
|
'1' : {
|
|
'x' : bottomLeftTR[0],
|
|
'y' : bottomLeftTR[1]
|
|
},
|
|
'2' : {
|
|
'x' : bottomLeftBR[0],
|
|
'y' : bottomLeftBR[1]
|
|
},
|
|
'3' : {
|
|
'x' : bottomLeftBL[0],
|
|
'y' : bottomLeftBL[1]
|
|
}
|
|
},
|
|
'1' : {
|
|
'0' : {
|
|
'x' : topLeftTL[0],
|
|
'y' : topLeftTL[1]
|
|
},
|
|
'1' : {
|
|
'x' : topLeftTR[0],
|
|
'y' : topLeftTR[1]
|
|
},
|
|
'2' : {
|
|
'x' : topLeftBR[0],
|
|
'y' : topLeftBR[1]
|
|
},
|
|
'3' : {
|
|
'x' : topLeftBL[0],
|
|
'y' : topLeftBL[1]
|
|
}
|
|
},
|
|
'2' : {
|
|
'0' : {
|
|
'x' : topRightTL[0],
|
|
'y' : topRightTL[1]
|
|
},
|
|
'1' : {
|
|
'x' : topRightTR[0],
|
|
'y' : topRightTR[1]
|
|
},
|
|
'2' : {
|
|
'x' : topRightBR[0],
|
|
'y' : topRightBR[1]
|
|
},
|
|
'3' : {
|
|
'x' : topRightBL[0],
|
|
'y' : topRightBL[1]
|
|
}
|
|
},
|
|
'3' : {
|
|
'0' : {
|
|
'x' : bottomRightTL[0],
|
|
'y' : bottomRightTL[1]
|
|
},
|
|
'1' : {
|
|
'x' : bottomRightTR[0],
|
|
'y' : bottomRightTR[1]
|
|
},
|
|
'2' : {
|
|
'x' : bottomRightBR[0],
|
|
'y' : bottomRightBR[1]
|
|
},
|
|
'3' : {
|
|
'x' : bottomRightBL[0],
|
|
'y' : bottomRightBL[1]
|
|
}
|
|
}
|
|
}
|
|
|
|
templateFile = f'{normalImage}.template.json'
|
|
with open(calibrationFile, 'w') as output:
|
|
output.write(dumps(jsonOut, sort_keys = True, indent = 4))
|
|
print(f'Wrote template file to {templateFile}')
|
|
|
|
display(clean)
|