animation/fourcell/common.py

122 lines
3.8 KiB
Python

import cv2
import math
def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):
dim = None
(h, w) = image.shape[:2]
if width is None and height is None:
return image
if width is None:
r = height / float(h)
dim = (int(w * r), height)
else:
r = width / float(w)
dim = (width, int(h * r))
resized = cv2.resize(image, dim, interpolation = inter)
return resized
def display (image) :
resized = image_resize(image, 800, 800)
cv2.imshow('img', resized)
while cv2.getWindowProperty('img', cv2.WND_PROP_VISIBLE) > 0:
key = cv2.waitKey(0)
if key == 27:
cv2.destroyAllWindows()
break
exit(0)
# taken from
# https://gist.github.com/phn/1111712/35e8883de01916f64f7f97da9434622000ac0390
def normalize_angle (num, lower=0.0, upper=360.0, b=False):
"""Normalize number to range [lower, upper) or [lower, upper].
Parameters
----------
num : float
The number to be normalized.
lower : float
Lower limit of range. Default is 0.0.
upper : float
Upper limit of range. Default is 360.0.
b : bool
Type of normalization. See notes.
Returns
-------
n : float
A number in the range [lower, upper) or [lower, upper].
Raises
------
ValueError
If lower >= upper.
Notes
-----
If the keyword `b == False`, the default, then the normalization
is done in the following way. Consider the numbers to be arranged
in a circle, with the lower and upper marks sitting on top of each
other. Moving past one limit, takes the number into the beginning
of the other end. For example, if range is [0 - 360), then 361
becomes 1. Negative numbers move from higher to lower
numbers. So, -1 normalized to [0 - 360) becomes 359.
If the keyword `b == True` then the given number is considered to
"bounce" between the two limits. So, -91 normalized to [-90, 90],
becomes -89, instead of 89. In this case the range is [lower,
upper]. This code is based on the function `fmt_delta` of `TPM`.
Range must be symmetric about 0 or lower == 0.
Examples
--------
>>> normalize(-270,-180,180)
90
>>> import math
>>> math.degrees(normalize(-2*math.pi,-math.pi,math.pi))
0.0
>>> normalize(181,-180,180)
-179
>>> normalize(-180,0,360)
180
>>> normalize(36,0,24)
12
>>> normalize(368.5,-180,180)
8.5
>>> normalize(-100, -90, 90, b=True)
-80.0
>>> normalize(100, -90, 90, b=True)
80.0
>>> normalize(181, -90, 90, b=True)
-1.0
>>> normalize(270, -90, 90, b=True)
-90.0
"""
# abs(num + upper) and abs(num - lower) are needed, instead of
# abs(num), since the lower and upper limits need not be 0. We need
# to add half size of the range, so that the final result is lower +
# <value> or upper - <value>, respectively.
res = num
if not b:
if lower >= upper:
raise ValueError("Invalid lower and upper limits: (%s, %s)" %
(lower, upper))
res = num
if num > upper or num == lower:
num = lower + abs(num + upper) % (abs(lower) + abs(upper))
if num < lower or num == upper:
num = upper - abs(num - lower) % (abs(lower) + abs(upper))
res = lower if res == upper else num
else:
total_length = abs(lower) + abs(upper)
if num < -total_length:
num += math.ceil(num / (-2 * total_length)) * 2 * total_length
if num > total_length:
num -= math.floor(num / (2 * total_length)) * 2 * total_length
if num > upper:
num = total_length - num
if num < lower:
num = -total_length - num
res = num * 1.0 # Make all numbers float, to be consistent
return res