Compare commits
No commits in common. "a1a57ef58c50722ce54d1ca739636aa00dfd7304" and "89678edd8e0c12b1cc301e3bad31e0693ab3b3ea" have entirely different histories.
a1a57ef58c
...
89678edd8e
|
@ -1,99 +0,0 @@
|
|||
import sys
|
||||
import cv2
|
||||
import numpy as np
|
||||
from json import load
|
||||
from os.path import exists, basename
|
||||
from common import image_resize, display, read_json
|
||||
|
||||
holeConstant = .0156862745 # 160/10200
|
||||
|
||||
# use top left, top right, bottom left
|
||||
def apply_image_to_points (original, target, points) :
|
||||
rows, cols, ch = original.shape
|
||||
ir, ic, ich = target.shape
|
||||
|
||||
print('Using points: ')
|
||||
print(points)
|
||||
|
||||
atPts = np.float32(points)
|
||||
targetPts = np.float32([[0, 0], [ic, 0], [0, ir]])
|
||||
|
||||
M = cv2.getAffineTransform(targetPts, atPts)
|
||||
dst = cv2.warpAffine(target, M, (cols, rows), borderMode=cv2.BORDER_TRANSPARENT)
|
||||
|
||||
output = original.copy()
|
||||
output[0:rows, 0:cols] = dst
|
||||
|
||||
return output
|
||||
|
||||
def create_blank(width, height):
|
||||
rgb_color=(255,255,255)
|
||||
image = np.zeros((height, width, 3), np.uint8)
|
||||
color = tuple(reversed(rgb_color))
|
||||
image[:] = color
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
||||
return cv2.cvtColor(gray, cv2.COLOR_GRAY2RGB)
|
||||
|
||||
# get points 0, 1 and 3 = top left, top right and bottom left
|
||||
def to_points (d) :
|
||||
return ((d['0']['x'], d['0']['y']),(d['1']['x'], d['1']['y']),(d['3']['x'], d['3']['y']),)
|
||||
|
||||
if len(sys.argv) < 2 :
|
||||
print('Please provide an output destination file')
|
||||
exit(1)
|
||||
|
||||
outputFile = sys.argv[1]
|
||||
|
||||
if len(sys.argv) < 3:
|
||||
print('Please provide a calibration template to apply images to')
|
||||
exit(2)
|
||||
|
||||
templateFile = sys.argv[2]
|
||||
|
||||
if not exists(templateFile) :
|
||||
print('Calibration template does not exist, please provide one that does')
|
||||
exit(3)
|
||||
|
||||
if len(sys.argv) < 4:
|
||||
print('Please provide at least one image to apply')
|
||||
exit(4)
|
||||
|
||||
if len(sys.argv) > 7:
|
||||
print('Please provide maximum four images to apply')
|
||||
exit(5)
|
||||
|
||||
images = []
|
||||
for i in range(3, len(sys.argv)):
|
||||
imagePath = sys.argv[i]
|
||||
if not exists(imagePath) :
|
||||
print(f'Image {imagePath} does not exist, exiting...')
|
||||
exit(6)
|
||||
images.append(imagePath)
|
||||
|
||||
print('Using images: ')
|
||||
for img in images:
|
||||
print(f' -> {basename(img)}')
|
||||
|
||||
tmpl = read_json(templateFile)
|
||||
|
||||
print(f"Image size {tmpl['width']}x{tmpl['height']}")
|
||||
|
||||
hole = round(tmpl['width'] * holeConstant)
|
||||
|
||||
#blank = create_blank(tmpl['width'], tmpl['height'])
|
||||
output = cv2.imread(templateFile.replace('.calibration.json', ''))#blank.copy()
|
||||
|
||||
hp = tmpl['holePunches']
|
||||
for i in hp:
|
||||
print(hp[i])
|
||||
cv2.circle(output, (hp[i]['x'], hp[i]['y'],), hole, (0, 0, 0,), -1)
|
||||
|
||||
#cv2.imwrite(outputFile, output)
|
||||
|
||||
for i in range(0, len(images)) :
|
||||
frame = cv2.imread(images[i])
|
||||
output = apply_image_to_points(output, frame, to_points(tmpl[f'{i}']))
|
||||
print(f'Applied {basename(images[i])}')
|
||||
|
||||
cv2.imwrite(outputFile, output)
|
||||
print(f'Wrote {outputFile}')
|
|
@ -3,8 +3,8 @@ import cv2
|
|||
import numpy as np
|
||||
import math
|
||||
from os.path import exists, basename
|
||||
from common import image_resize, display, normalize_angle, read_json
|
||||
from json import dumps
|
||||
from common import image_resize, display, normalize_angle
|
||||
from json import load,dumps
|
||||
|
||||
DEBUG = True
|
||||
|
||||
|
@ -12,6 +12,12 @@ DEBUG = True
|
|||
order = [ 0, 2, 3, 5, 4, 1 ]
|
||||
matchMethods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR', 'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
|
||||
|
||||
def read_text (textPath) :
|
||||
holePunches = {}
|
||||
with open(textPath) as json:
|
||||
holePunches = load(json)
|
||||
return holePunches
|
||||
|
||||
#
|
||||
# CALIBRATE
|
||||
#
|
||||
|
@ -38,7 +44,7 @@ print(f'Calibrating to scan {basename(normalImage)}')
|
|||
|
||||
registrationMark = cv2.imread('./registrationMark.png', 0)
|
||||
w, h = registrationMark.shape[:2]
|
||||
holePunches = read_json(normalText)
|
||||
holePunches = read_text(normalText)
|
||||
original = cv2.imread(normalImage)
|
||||
img = original.copy()
|
||||
height, width = img.shape[:2]
|
||||
|
|
|
@ -1,6 +1,5 @@
|
|||
import cv2
|
||||
import math
|
||||
from json import load
|
||||
|
||||
def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):
|
||||
dim = None
|
||||
|
@ -120,10 +119,4 @@ def normalize_angle (num, lower=0.0, upper=360.0, b=False):
|
|||
|
||||
res = num * 1.0 # Make all numbers float, to be consistent
|
||||
|
||||
return res
|
||||
|
||||
def read_json (textPath) :
|
||||
jsonOut = {}
|
||||
with open(textPath) as json:
|
||||
jsonOut = load(json)
|
||||
return jsonOut
|
||||
return res
|
Loading…
Reference in New Issue