2022-11-10 23:06:47 +00:00
|
|
|
import sys
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
|
|
|
import math
|
2022-11-24 17:10:05 +00:00
|
|
|
from json import dumps
|
2022-11-24 16:21:06 +00:00
|
|
|
from os.path import exists
|
|
|
|
from common import image_resize, display, normalize_angle
|
2022-11-10 23:06:47 +00:00
|
|
|
|
2022-11-24 16:21:06 +00:00
|
|
|
#clockwise from top left
|
|
|
|
order = [ 1, 3, 4, 6, 5, 2 ]
|
2022-11-10 23:06:47 +00:00
|
|
|
|
|
|
|
def get_center (contour) :
|
|
|
|
M = cv2.moments(contour)
|
|
|
|
cX = int(M["m10"] / M["m00"])
|
|
|
|
cY = int(M["m01"] / M["m00"])
|
|
|
|
return cX, cY
|
|
|
|
|
|
|
|
def draw_line (image, hps, a, b) :
|
|
|
|
print(f'{a} -> {b}')
|
|
|
|
lA = (hps[a-1]['x'], hps[a-1]['y'])
|
|
|
|
lB = (hps[b-1]['x'], hps[b-1]['y'])
|
|
|
|
cv2.line(image, lA, lB, [0, 255, 0], 10)
|
|
|
|
return (lA, lB)
|
|
|
|
|
|
|
|
def horiz_angle (line, rotate = 0) :
|
|
|
|
deltaY = line[1][1] - line[0][1] #P2_y - P1_y
|
|
|
|
deltaX = line[1][0] - line[0][0] #P2_x - P1_x
|
|
|
|
|
|
|
|
angleInDegrees = normalize_angle(math.degrees(math.atan2(deltaY, deltaX) + rotate))
|
|
|
|
return angleInDegrees
|
|
|
|
|
|
|
|
def verts_angle (line) :
|
|
|
|
angleInDegrees = normalize_angle(horiz_angle(line, math.pi/2))
|
|
|
|
return angleInDegrees
|
|
|
|
|
|
|
|
def is_close (point, points) :
|
|
|
|
for pt in points :
|
|
|
|
if math.dist(point, pt) < 100 :
|
|
|
|
return True
|
|
|
|
return False
|
|
|
|
|
|
|
|
def mean (lst):
|
|
|
|
return sum(lst) / len(lst)
|
|
|
|
|
|
|
|
def find_hole_punches (img) :
|
|
|
|
left=-1
|
|
|
|
right=-1
|
|
|
|
top=-1
|
|
|
|
bottom=-1
|
|
|
|
|
|
|
|
if orientation :
|
|
|
|
left = width * 0.2
|
|
|
|
right = width * 0.8
|
|
|
|
else :
|
|
|
|
top = height * 0.2
|
|
|
|
bottom = height * 0.8
|
|
|
|
|
|
|
|
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
|
|
blur = cv2.medianBlur(gray, 31)
|
|
|
|
ret, thresh = cv2.threshold(blur, 200, 255, cv2.THRESH_BINARY)
|
|
|
|
canny = cv2.Canny(thresh, 75, 200)
|
|
|
|
contours, hierarchy = cv2.findContours(canny, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
|
|
|
|
|
|
|
|
contourList = []
|
|
|
|
areaList = []
|
|
|
|
for contour in contours:
|
|
|
|
approx = cv2.approxPolyDP(contour, 0.03 * cv2.arcLength(contour, True), True)
|
|
|
|
if cv2.isContourConvex(approx) :
|
|
|
|
cX, cY = get_center(contour)
|
|
|
|
if (orientation and ( cX < left or cX > right) ) or ( not orientation and ( cY < top or cY > bottom)) :
|
|
|
|
area = cv2.contourArea(contour)
|
|
|
|
areaList.append(area)
|
|
|
|
contourList.append(contour)
|
|
|
|
|
|
|
|
maxArea=0
|
|
|
|
maxIndex=0
|
|
|
|
|
|
|
|
#reduce to lambda
|
|
|
|
for i in range(len(areaList)) :
|
|
|
|
area = areaList[i]
|
|
|
|
if area > maxArea:
|
|
|
|
maxArea = area
|
|
|
|
maxIndex = i
|
|
|
|
|
|
|
|
count = 0
|
|
|
|
holePunches = []
|
|
|
|
centers = []
|
|
|
|
areaRange = 0
|
|
|
|
topLeft = None
|
|
|
|
minDist = 1000000
|
|
|
|
|
|
|
|
# pretty good
|
|
|
|
# add position constraint
|
|
|
|
|
|
|
|
while count < 6 :
|
|
|
|
areaRange+=1
|
|
|
|
for i in range(len(areaList)) :
|
|
|
|
area = areaList[i]
|
|
|
|
if area == maxArea or area * ((100 + areaRange) / 100) > maxArea :
|
|
|
|
cX, cY = get_center(contourList[i])
|
|
|
|
if is_close((cX, cY), centers) :
|
|
|
|
continue
|
|
|
|
centers.append((cX, cY))
|
|
|
|
print(f'{cX},{cY}')
|
|
|
|
hp = {
|
|
|
|
'x' : cX,
|
|
|
|
'y' : cY,
|
|
|
|
'contour' : contourList[i],
|
|
|
|
'dist' : math.dist((cX, cY), (0, 0)),
|
|
|
|
'order': -1
|
|
|
|
}
|
|
|
|
if hp['dist'] < minDist :
|
|
|
|
minDist = hp['dist']
|
|
|
|
topLeft = hp
|
|
|
|
holePunches.append(hp)
|
|
|
|
count+=1
|
|
|
|
|
|
|
|
for hp in holePunches :
|
|
|
|
hp['dist'] = math.dist( (topLeft['x'], topLeft['y']), (hp['x'], hp['y']) )
|
|
|
|
|
|
|
|
print(f'Hole punches: {len(holePunches)}')
|
|
|
|
print(f'Found hole punches within {areaRange}% of largest')
|
|
|
|
|
|
|
|
if len(holePunches) != 6:
|
|
|
|
print(f'Wrong number of hole punches, exiting...')
|
|
|
|
exit(4)
|
|
|
|
|
|
|
|
holePunches = sorted(holePunches, key = lambda hp: hp['dist'])
|
|
|
|
|
|
|
|
i = 0
|
|
|
|
for hp in holePunches :
|
|
|
|
hp['order'] = i
|
2022-11-15 18:59:51 +00:00
|
|
|
#cv2.putText(img, str(i + 1), (hp['x'], hp['y']), cv2.FONT_HERSHEY_SIMPLEX, 20, (0, 0, 255), 5, cv2.LINE_AA, False)
|
2022-11-10 23:06:47 +00:00
|
|
|
i+=1
|
|
|
|
|
|
|
|
return holePunches
|
|
|
|
|
2022-11-24 17:10:05 +00:00
|
|
|
def simplify_hole_punches (holePunches) :
|
|
|
|
simple = {}
|
|
|
|
for hp in holePunches :
|
|
|
|
simple[hp['order']] = {
|
|
|
|
'x' : hp['x'],
|
|
|
|
'y' : hp['y']
|
|
|
|
}
|
|
|
|
return simple
|
|
|
|
|
2022-11-10 23:06:47 +00:00
|
|
|
def correct_rotation (img, original, holePunches) :
|
|
|
|
horizLines = [
|
|
|
|
(3, 1),
|
|
|
|
(6, 4),
|
|
|
|
(5, 2)
|
|
|
|
]
|
|
|
|
vertsLines = [
|
|
|
|
(1, 2),
|
|
|
|
(1, 4), #double long left
|
|
|
|
(1, 4), #
|
|
|
|
(3, 5),
|
|
|
|
(3, 6), #double long right
|
|
|
|
(3, 6), #
|
|
|
|
(2, 4),
|
|
|
|
(5, 6)
|
|
|
|
]
|
|
|
|
|
|
|
|
rotations = []
|
|
|
|
|
|
|
|
for h in horizLines :
|
|
|
|
line = draw_line(img, holePunches, h[0], h[1])
|
|
|
|
angle = horiz_angle(line)
|
|
|
|
print(angle)
|
|
|
|
rotations.append(angle)
|
|
|
|
|
|
|
|
for v in vertsLines :
|
|
|
|
line = draw_line(img, holePunches, v[0], v[1])
|
|
|
|
angle = verts_angle(line)
|
|
|
|
print(angle)
|
|
|
|
rotations.append(angle)
|
|
|
|
|
|
|
|
correctionRotation = mean(rotations) - 180
|
|
|
|
print(f'Mean rotation: {correctionRotation}')
|
|
|
|
|
|
|
|
(cX, cY) = (width // 2, height // 2)
|
|
|
|
M = cv2.getRotationMatrix2D((cX, cY), correctionRotation, 1.0)
|
|
|
|
|
|
|
|
#create rotation of original
|
|
|
|
return cv2.warpAffine(original, M, (width, height))
|
|
|
|
|
|
|
|
def create_blank (w, h, rgb_color = (255, 255, 255)) :
|
|
|
|
blank = np.zeros([h, w, 3], dtype=np.uint8)
|
|
|
|
color = tuple(reversed(rgb_color))
|
|
|
|
blank[:] = color
|
|
|
|
return blank
|
|
|
|
|
|
|
|
def get_mean_rect (holePunches) :
|
|
|
|
left = 0
|
|
|
|
right = 0
|
|
|
|
top = 0
|
|
|
|
bottom = 0
|
|
|
|
for hp in holePunches :
|
|
|
|
if hp['order'] == 0 :
|
|
|
|
left += float(hp['x'])
|
|
|
|
top += float(hp['y'])
|
|
|
|
elif hp['order'] == 2 :
|
2022-11-14 18:42:44 +00:00
|
|
|
right += float(hp['x'])
|
2022-11-10 23:06:47 +00:00
|
|
|
top += float(hp['y'])
|
|
|
|
elif hp['order'] == 3 :
|
|
|
|
left += float(hp['x'])
|
|
|
|
bottom += float(hp['y'])
|
|
|
|
elif hp['order'] == 5 :
|
|
|
|
right += float(hp['x'])
|
|
|
|
bottom += float(hp['y'])
|
2022-11-14 18:42:44 +00:00
|
|
|
w = round((right / 2.0) - (left / 2.0))
|
|
|
|
h = round((bottom / 2.0) - (top / 2.0))
|
|
|
|
return (w, h)
|
2022-11-10 23:06:47 +00:00
|
|
|
|
|
|
|
|
|
|
|
def center_within (larger, smaller) :
|
|
|
|
w1 = larger[0]
|
|
|
|
h1 = larger[1]
|
|
|
|
w2 = smaller[0]
|
|
|
|
h2 = smaller[1]
|
|
|
|
x = ((w1 - w2) / 2)
|
|
|
|
y = ((h1 - h2) / 2)
|
2022-11-14 18:42:44 +00:00
|
|
|
return (int(x), int(y))
|
|
|
|
|
|
|
|
# If we consider (0,0) as top left corner of image called
|
|
|
|
# im with left-to-right as x direction and top-to-bottom
|
|
|
|
# as y direction. and we have (x1,y1) as the top-left vertex
|
|
|
|
# and (x2,y2) as the bottom-right vertex of a rectangle
|
|
|
|
# region within that image, then:
|
|
|
|
#
|
|
|
|
# roi = im[y1:y2, x1:x2]
|
|
|
|
|
|
|
|
def crop (img, xoffset, yoffset, w, h) :
|
|
|
|
#crop_img = img[y:y+h, x:x+w].copy()
|
|
|
|
return im[yoffset:yoffset+w, xoffset:xoffset+w].copy()
|
2022-11-10 23:06:47 +00:00
|
|
|
|
2022-11-15 18:59:51 +00:00
|
|
|
def normalize_image(blank, rotated, offset, tl) :
|
|
|
|
rotatedHeight, rotatedWidth = rotated.shape[:2]
|
|
|
|
normalHeight, width = blank.shape[:2]
|
|
|
|
|
|
|
|
diffX = offset[0] - tl["x"]
|
|
|
|
diffY = offset[1] - tl["y"]
|
|
|
|
|
2022-11-16 01:55:06 +00:00
|
|
|
#print(f'diffX : {diffX}')
|
|
|
|
#print(f'diffY : {diffY}')
|
2022-11-15 18:59:51 +00:00
|
|
|
|
|
|
|
crop = rotated.copy()
|
|
|
|
if diffX < 0 :
|
|
|
|
crop = crop[0:rotatedHeight, abs(diffX):rotatedWidth]
|
|
|
|
rotatedHeight, rotatedWidth = crop.shape[:2]
|
2022-11-16 01:55:06 +00:00
|
|
|
#print('Cropped X')
|
|
|
|
#print(f'Rotated: {rotatedWidth},{rotatedHeight}')
|
2022-11-15 18:59:51 +00:00
|
|
|
diffX = 0
|
|
|
|
|
|
|
|
if diffY < 0 :
|
|
|
|
crop = crop[abs(diffY):rotatedHeight, 0:rotatedWidth]
|
|
|
|
rotatedHeight, rotatedWidth = crop.shape[:2]
|
2022-11-16 01:55:06 +00:00
|
|
|
#print('Cropped Y')
|
|
|
|
#print(f'Rotated: {rotatedWidth},{rotatedHeight}')
|
2022-11-15 18:59:51 +00:00
|
|
|
diffY = 0
|
|
|
|
|
|
|
|
if rotatedWidth > width :
|
|
|
|
crop = crop[0:rotatedHeight, 0:rotatedWidth-(rotatedWidth - width)]
|
|
|
|
rotatedHeight, rotatedWidth = crop.shape[:2]
|
2022-11-16 01:55:06 +00:00
|
|
|
#print('Cropped X')
|
|
|
|
#print(f'Rotated: {rotatedWidth},{rotatedHeight}')
|
2022-11-15 18:59:51 +00:00
|
|
|
|
|
|
|
if rotatedHeight > normalHeight :
|
|
|
|
crop = crop[0:rotatedHeight-(rotatedHeight - normalHeight), 0:width]
|
|
|
|
rotatedHeight, rotatedWidth = crop.shape[:2]
|
2022-11-16 01:55:06 +00:00
|
|
|
#print('Cropped Y')
|
|
|
|
#print(f'Rotated: {rotatedWidth},{rotatedHeight}')
|
2022-11-15 18:59:51 +00:00
|
|
|
|
2022-11-16 01:55:06 +00:00
|
|
|
#print(f'diffX : {diffX}')
|
|
|
|
#print(f'diffY : {diffY}')
|
2022-11-15 18:59:51 +00:00
|
|
|
|
2022-11-16 01:55:06 +00:00
|
|
|
#print(f'Rotated: {rotatedWidth},{rotatedHeight}')
|
|
|
|
#print(f'Blank : {width},{normalHeight}')
|
2022-11-15 18:59:51 +00:00
|
|
|
|
|
|
|
cropHeight = normalHeight
|
|
|
|
cropWidth = width
|
|
|
|
|
|
|
|
if normalHeight > rotatedHeight :
|
|
|
|
cropHeight = rotatedHeight
|
|
|
|
|
|
|
|
if width > rotatedWidth :
|
|
|
|
cropWidth = rotatedWidth
|
|
|
|
|
|
|
|
blank[diffY:cropHeight, diffX:cropWidth] = crop[0:cropHeight-diffY, 0:cropWidth - diffX]
|
|
|
|
|
|
|
|
return blank
|
|
|
|
|
2022-11-24 16:21:06 +00:00
|
|
|
#
|
|
|
|
# NORMALIZE
|
|
|
|
#
|
|
|
|
|
2022-11-10 23:06:47 +00:00
|
|
|
if len(sys.argv) < 2:
|
|
|
|
print('Please provide path of scan to normalize')
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
if len(sys.argv) < 3:
|
|
|
|
print('Please provide path to output file')
|
|
|
|
exit(2)
|
|
|
|
|
|
|
|
scanImage = sys.argv[-2]
|
2022-11-24 16:21:06 +00:00
|
|
|
|
|
|
|
if not exists(scanImage) :
|
|
|
|
print('Scan provided does not exist')
|
|
|
|
exit(5)
|
|
|
|
|
2022-11-10 23:06:47 +00:00
|
|
|
normalImage = sys.argv[-1]
|
|
|
|
pageDim = (11, 8.5)
|
|
|
|
pageRatio = pageDim[1] / pageDim[0]
|
|
|
|
|
|
|
|
print(f'Normalizing {scanImage} as {normalImage}')
|
|
|
|
|
|
|
|
original = cv2.imread(scanImage)
|
|
|
|
img = original.copy()
|
|
|
|
|
|
|
|
height, width = img.shape[:2]
|
|
|
|
orientation = height > width
|
|
|
|
if not orientation :
|
|
|
|
print(f'Scan is not in portrait mode, exiting...')
|
|
|
|
exit(3)
|
|
|
|
|
|
|
|
normalHeight = round(float(width) / pageRatio)
|
|
|
|
|
|
|
|
holePunches = find_hole_punches(img)
|
|
|
|
rotated = correct_rotation(img, original, holePunches)
|
2022-11-14 18:42:44 +00:00
|
|
|
rotatedHeight, rotatedWidth = rotated.shape[:2]
|
2022-11-10 23:06:47 +00:00
|
|
|
|
|
|
|
holePunches = find_hole_punches(rotated)
|
|
|
|
blank = create_blank(width, normalHeight)
|
|
|
|
|
|
|
|
tl = None
|
|
|
|
for hp in holePunches :
|
|
|
|
if tl is None :
|
|
|
|
tl = hp
|
2022-11-16 01:55:06 +00:00
|
|
|
#print(f'{hp["order"] + 1} {hp["x"]},{hp["y"]}')
|
2022-11-10 23:06:47 +00:00
|
|
|
|
|
|
|
# the mean rectangle is the average width and height
|
|
|
|
# determined by the four corner hole punches
|
|
|
|
meanRect = get_mean_rect(holePunches)
|
|
|
|
print(f'Mean rectangle: {meanRect[0]},{meanRect[1]}')
|
|
|
|
|
|
|
|
# offset is the position within the new normal image
|
|
|
|
# the top left hole punch should be centered to
|
|
|
|
offset = center_within((width, normalHeight), meanRect)
|
2022-11-16 01:55:06 +00:00
|
|
|
#print(f'Offset : {offset[0]},{offset[1]}')
|
|
|
|
#print(f'Topleft: {tl["x"]},{tl["y"]}')
|
|
|
|
#print(f'Rotated: {rotatedWidth},{rotatedHeight}')
|
|
|
|
print(f'Normal : {width},{normalHeight}')
|
2022-11-10 23:06:47 +00:00
|
|
|
|
2022-11-15 18:59:51 +00:00
|
|
|
#cv2.rectangle(blank, offset, (offset[0]+meanRect[0], offset[1]+meanRect[1]), (255, 0, 0), thickness=20)
|
|
|
|
|
|
|
|
normal = normalize_image(blank, rotated, offset, tl)
|
2022-11-10 23:06:47 +00:00
|
|
|
|
2022-11-15 18:59:51 +00:00
|
|
|
print(f'Writing normalized image to {normalImage}')
|
|
|
|
cv2.imwrite(normalImage, normal)
|
2022-11-15 19:05:45 +00:00
|
|
|
|
|
|
|
evaluation = find_hole_punches(normal)
|
2022-11-24 17:10:05 +00:00
|
|
|
jsonOut = simplify_hole_punches(evaluation)
|
2022-11-15 19:05:45 +00:00
|
|
|
|
2022-11-24 17:10:05 +00:00
|
|
|
with open(f'{normalImage}.json', 'w') as output:
|
|
|
|
output.write(dumps(jsonOut, sort_keys = True, indent = 4))
|
|
|
|
print(f'Wrote hole punch definition file to {normalImage}.json')
|