122 lines
3.8 KiB
Python
122 lines
3.8 KiB
Python
|
import cv2
|
||
|
import math
|
||
|
|
||
|
def image_resize(image, width = None, height = None, inter = cv2.INTER_AREA):
|
||
|
dim = None
|
||
|
(h, w) = image.shape[:2]
|
||
|
|
||
|
if width is None and height is None:
|
||
|
return image
|
||
|
|
||
|
if width is None:
|
||
|
r = height / float(h)
|
||
|
dim = (int(w * r), height)
|
||
|
else:
|
||
|
r = width / float(w)
|
||
|
dim = (width, int(h * r))
|
||
|
resized = cv2.resize(image, dim, interpolation = inter)
|
||
|
|
||
|
return resized
|
||
|
|
||
|
def display (image) :
|
||
|
resized = image_resize(image, 800, 800)
|
||
|
cv2.imshow('img', resized)
|
||
|
|
||
|
while cv2.getWindowProperty('img', cv2.WND_PROP_VISIBLE) > 0:
|
||
|
key = cv2.waitKey(0)
|
||
|
if key == 27:
|
||
|
cv2.destroyAllWindows()
|
||
|
break
|
||
|
exit(0)
|
||
|
|
||
|
# taken from
|
||
|
# https://gist.github.com/phn/1111712/35e8883de01916f64f7f97da9434622000ac0390
|
||
|
def normalize_angle (num, lower=0.0, upper=360.0, b=False):
|
||
|
"""Normalize number to range [lower, upper) or [lower, upper].
|
||
|
Parameters
|
||
|
----------
|
||
|
num : float
|
||
|
The number to be normalized.
|
||
|
lower : float
|
||
|
Lower limit of range. Default is 0.0.
|
||
|
upper : float
|
||
|
Upper limit of range. Default is 360.0.
|
||
|
b : bool
|
||
|
Type of normalization. See notes.
|
||
|
Returns
|
||
|
-------
|
||
|
n : float
|
||
|
A number in the range [lower, upper) or [lower, upper].
|
||
|
Raises
|
||
|
------
|
||
|
ValueError
|
||
|
If lower >= upper.
|
||
|
Notes
|
||
|
-----
|
||
|
If the keyword `b == False`, the default, then the normalization
|
||
|
is done in the following way. Consider the numbers to be arranged
|
||
|
in a circle, with the lower and upper marks sitting on top of each
|
||
|
other. Moving past one limit, takes the number into the beginning
|
||
|
of the other end. For example, if range is [0 - 360), then 361
|
||
|
becomes 1. Negative numbers move from higher to lower
|
||
|
numbers. So, -1 normalized to [0 - 360) becomes 359.
|
||
|
If the keyword `b == True` then the given number is considered to
|
||
|
"bounce" between the two limits. So, -91 normalized to [-90, 90],
|
||
|
becomes -89, instead of 89. In this case the range is [lower,
|
||
|
upper]. This code is based on the function `fmt_delta` of `TPM`.
|
||
|
Range must be symmetric about 0 or lower == 0.
|
||
|
Examples
|
||
|
--------
|
||
|
>>> normalize(-270,-180,180)
|
||
|
90
|
||
|
>>> import math
|
||
|
>>> math.degrees(normalize(-2*math.pi,-math.pi,math.pi))
|
||
|
0.0
|
||
|
>>> normalize(181,-180,180)
|
||
|
-179
|
||
|
>>> normalize(-180,0,360)
|
||
|
180
|
||
|
>>> normalize(36,0,24)
|
||
|
12
|
||
|
>>> normalize(368.5,-180,180)
|
||
|
8.5
|
||
|
>>> normalize(-100, -90, 90, b=True)
|
||
|
-80.0
|
||
|
>>> normalize(100, -90, 90, b=True)
|
||
|
80.0
|
||
|
>>> normalize(181, -90, 90, b=True)
|
||
|
-1.0
|
||
|
>>> normalize(270, -90, 90, b=True)
|
||
|
-90.0
|
||
|
"""
|
||
|
# abs(num + upper) and abs(num - lower) are needed, instead of
|
||
|
# abs(num), since the lower and upper limits need not be 0. We need
|
||
|
# to add half size of the range, so that the final result is lower +
|
||
|
# <value> or upper - <value>, respectively.
|
||
|
res = num
|
||
|
if not b:
|
||
|
if lower >= upper:
|
||
|
raise ValueError("Invalid lower and upper limits: (%s, %s)" %
|
||
|
(lower, upper))
|
||
|
|
||
|
res = num
|
||
|
if num > upper or num == lower:
|
||
|
num = lower + abs(num + upper) % (abs(lower) + abs(upper))
|
||
|
if num < lower or num == upper:
|
||
|
num = upper - abs(num - lower) % (abs(lower) + abs(upper))
|
||
|
|
||
|
res = lower if res == upper else num
|
||
|
else:
|
||
|
total_length = abs(lower) + abs(upper)
|
||
|
if num < -total_length:
|
||
|
num += math.ceil(num / (-2 * total_length)) * 2 * total_length
|
||
|
if num > total_length:
|
||
|
num -= math.floor(num / (2 * total_length)) * 2 * total_length
|
||
|
if num > upper:
|
||
|
num = total_length - num
|
||
|
if num < lower:
|
||
|
num = -total_length - num
|
||
|
|
||
|
res = num * 1.0 # Make all numbers float, to be consistent
|
||
|
|
||
|
return res
|