Update rack and pinion library to one that produces valid geometry. Make first pass at rack and pinion gear

This commit is contained in:
Matt McWilliams 2023-10-06 13:47:15 -04:00
parent e6b9628746
commit 1e0338a77f
9 changed files with 333 additions and 343 deletions

View File

@ -1,5 +1,5 @@
{ {
"version": "1.8.42", "version": "1.8.43",
"ext_port": 1111, "ext_port": 1111,
"profiles": { "profiles": {
"mcopy": { "mcopy": {

2
app/package-lock.json generated
View File

@ -1,6 +1,6 @@
{ {
"name": "mcopy-app", "name": "mcopy-app",
"version": "1.8.42", "version": "1.8.43",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {

View File

@ -1,6 +1,6 @@
{ {
"name": "mcopy-app", "name": "mcopy-app",
"version": "1.8.42", "version": "1.8.43",
"description": "GUI for the mcopy small gauge film optical printer platform", "description": "GUI for the mcopy small gauge film optical printer platform",
"main": "main.js", "main": "main.js",
"scripts": { "scripts": {

View File

@ -1,5 +1,5 @@
{ {
"version": "1.8.42", "version": "1.8.43",
"ext_port": 1111, "ext_port": 1111,
"profiles": { "profiles": {
"mcopy": { "mcopy": {

4
package-lock.json generated
View File

@ -1,12 +1,12 @@
{ {
"name": "mcopy", "name": "mcopy",
"version": "1.8.42", "version": "1.8.43",
"lockfileVersion": 2, "lockfileVersion": 2,
"requires": true, "requires": true,
"packages": { "packages": {
"": { "": {
"name": "mcopy", "name": "mcopy",
"version": "1.8.42", "version": "1.8.43",
"license": "MIT", "license": "MIT",
"dependencies": { "dependencies": {
"arduino": "file:app/lib/arduino", "arduino": "file:app/lib/arduino",

View File

@ -1,6 +1,6 @@
{ {
"name": "mcopy", "name": "mcopy",
"version": "1.8.42", "version": "1.8.43",
"description": "Small gauge film optical printer platform", "description": "Small gauge film optical printer platform",
"main": "build.js", "main": "build.js",
"directories": { "directories": {

View File

@ -1,5 +1,5 @@
{ {
"version": "1.8.42", "version": "1.8.43",
"ext_port": 1111, "ext_port": 1111,
"profiles": { "profiles": {
"mcopy": { "mcopy": {

View File

@ -35,9 +35,9 @@ LEDPinSpacing = 2.54;
LEDH = 8.6; LEDH = 8.6;
ServoX = 55; ServoX = 55;
ServoY = 7; ServoY = 7 + 2;
ServoBoltD = 3.5;
ServoZ = 20; ServoZ = 20;
ServoBoltD = 3.5;
ServoSpaceZ = 9.5; ServoSpaceZ = 9.5;
ServoSpaceX = 48; ServoSpaceX = 48;
ServoVoidX = 40.5; ServoVoidX = 40.5;
@ -408,7 +408,7 @@ module panel (pos = [0, 0, 0], rot = [0, 0, 0], Mounts = "2020") {
} }
nub_rails([28.25, 0, -5]); nub_rails([28.25, 0, -5]);
servo_mount([33, 8, -45], [0, 90, 0]); servo_mount([33, 9, -45], [0, 90, 0]);
difference () { difference () {
stepper_mount([0, 0, -(StepperMountZ / 2) - (PanelZ / 2)]); stepper_mount([0, 0, -(StepperMountZ / 2) - (PanelZ / 2)]);
@ -476,8 +476,8 @@ module servo_mount_bolts_void () {
translate([ X, 0, -Z]) rotate([90, 90, 0]) cylinder(r = R(ServoBoltD), h = ServoY + 1, center = true, $fn = 60); translate([ X, 0, -Z]) rotate([90, 90, 0]) cylinder(r = R(ServoBoltD), h = ServoY + 1, center = true, $fn = 60);
translate([-X, 0, -Z]) rotate([90, 90, 0]) cylinder(r = R(ServoBoltD), h = ServoY + 1, center = true, $fn = 60); translate([-X, 0, -Z]) rotate([90, 90, 0]) cylinder(r = R(ServoBoltD), h = ServoY + 1, center = true, $fn = 60);
translate([-X, -7, -Z]) rotate([90, 90, 0]) cylinder(r = R(6), h = 10, center = true, $fn = 60); translate([-X, -6, -Z]) rotate([90, 90, 0]) cylinder(r = R(6), h = 10, center = true, $fn = 60);
translate([-X, -7, Z]) rotate([90, 90, 0]) cylinder(r = R(6), h = 10, center = true, $fn = 60); translate([-X, -6, Z]) rotate([90, 90, 0]) cylinder(r = R(6), h = 10, center = true, $fn = 60);
} }
module servo_mount_void () { module servo_mount_void () {
@ -491,7 +491,9 @@ module servo_mount (pos = [0, 0, 0], rot = [0, 0, 0]) {
translate (pos) rotate (rot) { translate (pos) rotate (rot) {
difference () { difference () {
union () { union () {
translate([1.5, 0, 0]) rotate([90, 0, 0]) rounded_cube([ServoX + 3, ServoZ+10, ServoY ], d = 4, center = true, $fn = 40); translate([1.5, 0, 0]) rotate([90, 0, 0]) {
rounded_cube([ServoX + 3, ServoZ+10, ServoY ], d = 4, center = true, $fn = 40);
}
difference () { difference () {
translate([-34, 0, 0]) cube([17, ServoY, ServoZ + 10 ], center = true, $fn = 40); translate([-34, 0, 0]) cube([17, ServoY, ServoZ + 10 ], center = true, $fn = 40);
translate([-19, 0, 0]) cube([17, ServoY + 1, 20 ], center = true, $fn = 40); translate([-19, 0, 0]) cube([17, ServoY + 1, 20 ], center = true, $fn = 40);
@ -500,7 +502,8 @@ module servo_mount (pos = [0, 0, 0], rot = [0, 0, 0]) {
servo_mount_void(); servo_mount_void();
//angled void for motor //angled void for motor
translate([0, 7.5, -15]) rotate([45, 0, 0]) cube([ServoX+20, 10, 10], center = true); translate([25.5, 6.5, -15]) rotate([45, 0, 0]) cube([ServoX+20, 10, 10], center = true);
//cut off end //cut off end
translate([0, 0, 15.4]) cube([ServoX+30, 10, 10], center = true); translate([0, 0, 15.4]) cube([ServoX+30, 10, 10], center = true);
//cut off top //cut off top
@ -508,7 +511,10 @@ module servo_mount (pos = [0, 0, 0], rot = [0, 0, 0]) {
bolt_and_cap_void([-35, 0, 20], [0, 0, 0], bolt = 15); bolt_and_cap_void([-35, 0, 20], [0, 0, 0], bolt = 15);
translate([-35, 0, 6]) m3_nut(2.5); translate([-35, 0, 6]) m3_nut(2.5);
translate([-35, 5, 6]) cube([6.75, 10, 2.5], center = true); translate([-35, 5, 6]) cube([6.75, 10, 2.5], center = true);
//panel bolt void
translate([-40, 4.5, -17]) rotate([0, 90, 0]) cylinder(r = R(7), h = 25, center = true);
} }
} }
//debug //debug
//translate([(55 / 2)-17.5, 0, 0]) sphere(r = 6 / 2, $fn = 60); //translate([(55 / 2)-17.5, 0, 0]) sphere(r = 6 / 2, $fn = 60);
@ -532,15 +538,44 @@ module servo_mount_cover (pos = [0, 0, 0], rot = [0, 0, 0]) {
servo_mount_void(); servo_mount_void();
servo_mount(); servo_mount();
translate([-22.25 - 4, 0, -15.4]) cube([ServoX+30, 10, 10], center = true); translate([-22.25 - 4, 0, -15.4]) cube([ServoX+30, 10, 10], center = true);
bolt_and_cap_void([-35, 0, 20], [0, 0, 0]); bolt_and_cap_void([-35, 0, 20], [0, 0, 0]);
translate([-35, 0, 0]) cube([20, 20, 20], center = true); translate([-35, 0, 0]) cube([20, 20, 20], center = true);
translate([-51, 0, 10]) cube([20, 20, 20], center = true);
} }
} }
} }
module projector () { module servo_gear (pos = [0, 0, 0], rot = [0, 0, 0]) {
translate(pos) rotate(rot) {
difference () {
union () {
translate([0, -32, -4.4]) rad_und_zahnstange(modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel, schraegungswinkel, zusammen_gebaut, optimiert);
cylinder(r = R(28), h = 8.8, center = true, $fn = 50);
}
cylinder(r = R(5.8), h = 40, center = true);
bolt_and_cap_void([0, 10, 8.8 - 3.5]);
}
//cylinder(r = R(1), h = 20, center = true);
}
}
module nub_rack (pos = [0, 0, 0], rot = [0, 0, 0]) {
H = 9.25 + 2.75;
Len = 50;
translate(pos) rotate(rot) {
difference () {
union () {
translate([21.5, 4, -8.8 / 2]) zahnstange_und_rad(modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel, schraegungswinkel, zusammen_gebaut, optimiert);
translate([Len / 2, -H / 2, 0]) cube([Len, H, 8.8], center = true);
translate([(Len / 2) - 1.5, -H - (11 / 2) + 0.1, 0]) {
rotate([90, 0, 0]) cylinder(r = R(4.75), h = 11, center = true, $fn = 60);
}
}
//slot for bolt
//translate([Len / 2, 2, 8.8 - 1.5]) cube([Len + 1, H, 8.8], center = true);
}
}
} }
module debug () { module debug () {
@ -575,10 +610,12 @@ module debug () {
} }
//color("red") translate([(-PanelX / 2) + 10, 0, (-PanelZ / 2) -10]) rotate([90, 0, 0]) 2020_tslot(PanelY); //color("red") translate([(-PanelX / 2) + 10, 0, (-PanelZ / 2) -10]) rotate([90, 0, 0]) 2020_tslot(PanelY);
//orbital_mount([(-PanelX / 2) - 4.5, 0, 40], [0, 90, 0]); //orbital_mount([(-PanelX / 2) - 4.5, 0, 40], [0, 90, 0]);
color("red") servo_mount_cover([33, 8+10, -45], [0, 90, 0]); //servo_mount_cover([33, 8+10, -45], [0, 90, 0]);
color([0.5,0.5,0,0.8]) servo_gear([33, 0, -32.5 + 7.75 - 10], [90, 0, 0]);
nub_rack([-6, 0, -15], [-90, 0, 0]);
} }
PART = "panel"; PART = "nub_rackx";
if (PART == "gate_key") { if (PART == "gate_key") {
gate_key(KeyRot = 0); gate_key(KeyRot = 0);
@ -586,12 +623,16 @@ if (PART == "gate_key") {
rotate([180, 0, 0]) panel(); rotate([180, 0, 0]) panel();
} else if (PART == "servo_mount_cover"){ } else if (PART == "servo_mount_cover"){
servo_mount_cover([0, 0, 0], [0, 90, 0]); servo_mount_cover([0, 0, 0], [0, 90, 0]);
} else if (PART == "servo_gear") {
servo_gear();
} else if (PART == "led_housing"){ } else if (PART == "led_housing"){
LED_housing(); LED_housing();
} else if (PART == "led_enclosure"){ } else if (PART == "led_enclosure"){
LED_enclosure(); LED_enclosure();
} else if (PART == "orbital_mount") { } else if (PART == "orbital_mount") {
orbital_mount(); orbital_mount();
} else if (PART == "nub_rack") {
nub_rack();
} else { } else {
debug(); debug();
} }

View File

@ -1,338 +1,287 @@
//This is a modification of " Public Domain Parametric Involute Spur Gear (and involute helical gear and involute rack) // Kopfspiel
// by Leemon Baird, 2011, Leemon@Leemon.com spiel = 0.05;
//http://www.thingiverse.com/thing:5505 " // Hoehe des Zahnkopfes ueber dem Teilkreis
modul=1;
// Laenge der Zahnstange
laenge_stange=50;
// Anzahl der Radzaehne
zahnzahl_ritzel=32;
// Hoehe der Zahnstange bis zur Waelzgeraden
hoehe_stange=4;
// Durchmesser der Mittelbohrung des Stirnrads
bohrung_ritzel=4;
// Breite der Zaehne
breite=8.8;
// Eingriffswinkel, Standardwert = 20 grad gemaess DIN 867. Sollte nicht groesser als 45 grad sein.
eingriffswinkel=20;
// Schraegungswinkel zur Rotationsachse, Standardwert = 0 grad (Geradverzahnung)
schraegungswinkel=20;
// Komponenten zusammengebaut fuer Konstruktion oder auseinander zum 3D-Druck
zusammen_gebaut=0;
// Loecher zur Material-/Gewichtsersparnis bzw. Oberflaechenvergoesserung erzeugen, wenn Geometrie erlaubt
optimiert = 1;
//Modifications by racatack June 2016: /* Bibliothek fuer ein Zahstangen-Radpaar fuer Thingiverse Customizer
// v1.0, 6/24/16:
// -Incorporated 'module InvoluteGear_rack()' from the 11/11/15 comment by quisam2342 in thing:5505 to fix noted problems in rack generation at various tooth sizes
// -Added a section for an optional 'backboard' that can be used to stiffen an otherwise skinny rack
// -Added sections for optional Stop Blocks at either or both ends of a rack
// -Removed extra gears from the example since I only need one pinion. See thing:5505 example section to gain more insight into gear generation.
//v1.1, 6/28/16:
// -Added sections to optionally create mounting flanges on the bottom/backside of the rack. Flanges can be at either or both ends, or longitudinal.
//TO GENERATE A CUSTOM RACK AND PINION ENTER INPUTS AT LINES 345-377 Enthaelt die Module
zahnstange(modul, laenge, hoehe, breite, eingriffswinkel = 20, schraegungswinkel = 0)
stirnrad(modul, zahnzahl, breite, bohrung, eingriffswinkel = 20, schraegungswinkel = 0, optimiert = true)
zahnstange_und_ritzel (modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel=20, schraegungswinkel=0, zusammen_gebaut=true, optimiert=true)
Autor: Dr Joerg Janssen
Stand: 6. Januar 2017
Version: 2.0
Lizenz: Creative Commons - Attribution, Non Commercial, Share Alike
Erlaubte Module nach DIN 780:
0.05 0.06 0.08 0.10 0.12 0.16
0.20 0.25 0.3 0.4 0.5 0.6
0.7 0.8 0.9 1 1.25 1.5
2 2.5 3 4 5 6
8 10 12 16 20 25
32 40 50 60
*/
////////////////////////////////////////////////////////////////////////////////////////////// /* [Hidden] */
// Public Domain Parametric Involute Spur Gear (and involute helical gear and involute rack) pi = 3.14159;
// version 1.1 rad = 57.29578;
// by Leemon Baird, 2011, Leemon@Leemon.com $fn = 96;
//http://www.thingiverse.com/thing:5505
//
// This file is public domain. Use it for any purpose, including commercial
// applications. Attribution would be nice, but is not required. There is
// no warranty of any kind, including its correctness, usefulness, or safety.
//
// This is parameterized involute spur (or helical) gear. It is much simpler and less powerful than
// others on Thingiverse. But it is public domain. I implemented it from scratch from the
// descriptions and equations on Wikipedia and the web, using Mathematica for calculations and testing,
// and I now release it into the public domain.
//
// http://en.wikipedia.org/wiki/Involute_gear
// http://en.wikipedia.org/wiki/Gear
// http://en.wikipedia.org/wiki/List_of_gear_nomenclature
// http://gtrebaol.free.fr/doc/catia/spur_gear.html
// http://www.cs.cmu.edu/~rapidproto/mechanisms/chpt7.html
//
// The module gear() gives an involute spur gear, with reasonable defaults for all the parameters.
// Normally, you should just choose the first 4 parameters, and let the rest be default values.
// The module gear() gives a gear in the XY plane, centered on the origin, with one tooth centered on
// the positive Y axis. The various functions below it take the same parameters, and return various
// measurements for the gear. The most important is pitch_radius, which tells how far apart to space
// gears that are meshing, and adendum_radius, which gives the size of the region filled by the gear.
// A gear has a "pitch circle", which is an invisible circle that cuts through the middle of each
// tooth (though not the exact center). In order for two gears to mesh, their pitch circles should
// just touch. So the distance between their centers should be pitch_radius() for one, plus pitch_radius()
// for the other, which gives the radii of their pitch circles.
//
// In order for two gears to mesh, they must have the same mm_per_tooth and pressure_angle parameters.
// mm_per_tooth gives the number of millimeters of arc around the pitch circle covered by one tooth and one
// space between teeth. The pitch angle controls how flat or bulged the sides of the teeth are. Common
// values include 14.5 degrees and 20 degrees, and occasionally 25. Though I've seen 28 recommended for
// plastic gears. Larger numbers bulge out more, giving stronger teeth, so 28 degrees is the default here.
//
// The ratio of number_of_teeth for two meshing gears gives how many times one will make a full
// revolution when the the other makes one full revolution. If the two numbers are coprime (i.e.
// are not both divisible by the same number greater than 1), then every tooth on one gear
// will meet every tooth on the other, for more even wear. So coprime numbers of teeth are good.
//
// The module rack() gives a rack, which is a bar with teeth. A rack can mesh with any
// gear that has the same mm_per_tooth and pressure_angle.
//
// Some terminology:
// The outline of a gear is a smooth circle (the "pitch circle") which has mountains and valleys
// added so it is toothed. So there is an inner circle (the "root circle") that touches the
// base of all the teeth, an outer circle that touches the tips of all the teeth,
// and the invisible pitch circle in between them. There is also a "base circle", which can be smaller than
// all three of the others, which controls the shape of the teeth. The side of each tooth lies on the path
// that the end of a string would follow if it were wrapped tightly around the base circle, then slowly unwound.
// That shape is an "involute", which gives this type of gear its name.
//
//////////////////////////////////////////////////////////////////////////////////////////////
//An involute spur gear, with reasonable defaults for all the parameters. /* Wandelt Radian in Grad um */
//Normally, you should just choose the first 4 parameters, and let the rest be default values. function grad(eingriffswinkel) = eingriffswinkel*rad;
//Meshing gears must match in mm_per_tooth, pressure_angle, and twist,
//and be separated by the sum of their pitch radii, which can be found with pitch_radius(). /* Wandelt Grad in Radian um */
module gear ( function radian(eingriffswinkel) = eingriffswinkel/rad;
mm_per_tooth = 3, //this is the "circular pitch", the circumference of the pitch circle divided by the number of teeth
number_of_teeth = 11, //total number of teeth around the entire perimeter /* Wandelt 2D-Polarkoordinaten in kartesische um
thickness = 6, //thickness of gear in mm Format: radius, phi; phi = Winkel zur x-Achse auf xy-Ebene */
hole_diameter = 3, //diameter of the hole in the center, in mm function pol_zu_kart(polvect) = [
twist = 0, //teeth rotate this many degrees from bottom of gear to top. 360 makes the gear a screw with each thread going around once polvect[0]*cos(polvect[1]),
teeth_to_hide = 0, //number of teeth to delete to make this only a fraction of a circle polvect[0]*sin(polvect[1])
pressure_angle = 28, //Controls how straight or bulged the tooth sides are. In degrees. ];
clearance = 0.0, //gap between top of a tooth on one gear and bottom of valley on a meshing gear (in millimeters)
backlash = 0.0 //gap between two meshing teeth, in the direction along the circumference of the pitch circle /* Kreisevolventen-Funktion:
) { Gibt die Polarkoordinaten einer Kreisevolvente aus
assign(pi = 3.1415926) r = Radius des Grundkreises
assign(p = mm_per_tooth * number_of_teeth / pi / 2) //radius of pitch circle rho = Abrollwinkel in Grad */
assign(c = p + mm_per_tooth / pi - clearance) //radius of outer circle function ev(r,rho) = [
assign(b = p*cos(pressure_angle)) //radius of base circle r/cos(rho),
assign(r = p-(c-p)-clearance) //radius of root circle grad(tan(rho)-radian(rho))
assign(t = mm_per_tooth/2-backlash/2) //tooth thickness at pitch circle ];
assign(k = -iang(b, p) - t/2/p/pi*180) { //angle to where involute meets base circle on each side of tooth
difference() { /* Wandelt Kugelkoordinaten in kartesische um
for (i = [0:number_of_teeth-teeth_to_hide-1] ) Format: radius, theta, phi; theta = Winkel zu z-Achse, phi = Winkel zur x-Achse auf xy-Ebene */
rotate([0,0,i*360/number_of_teeth]) function kugel_zu_kart(vect) = [
linear_extrude(height = thickness, center = true, convexity = 10, twist = twist) vect[0]*sin(vect[1])*cos(vect[2]),
polygon( vect[0]*sin(vect[1])*sin(vect[2]),
points=[ vect[0]*cos(vect[1])
[0, -hole_diameter/10], ];
polar(r, -181/number_of_teeth),
polar(r, r<b ? k : -180/number_of_teeth), /* prueft, ob eine Zahl gerade ist
q7(0/5,r,b,c,k, 1),q7(1/5,r,b,c,k, 1),q7(2/5,r,b,c,k, 1),q7(3/5,r,b,c,k, 1),q7(4/5,r,b,c,k, 1),q7(5/5,r,b,c,k, 1), = 1, wenn ja
q7(5/5,r,b,c,k,-1),q7(4/5,r,b,c,k,-1),q7(3/5,r,b,c,k,-1),q7(2/5,r,b,c,k,-1),q7(1/5,r,b,c,k,-1),q7(0/5,r,b,c,k,-1), = 0, wenn die Zahl nicht gerade ist */
polar(r, r<b ? -k : 180/number_of_teeth), function istgerade(zahl) =
polar(r, 181/number_of_teeth) (zahl == floor(zahl/2)*2) ? 1 : 0;
],
paths=[[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]] /* Kopiert und dreht einen Koerper */
); module kopiere(vect, zahl, abstand, winkel){
cylinder(h=2*thickness+1, r=hole_diameter/2, center=true, $fn=20); for(i = [0:zahl-1]){
translate(v=vect*abstand*i)
rotate(a=i*winkel, v = [0,0,1])
children(0);
} }
} }
/* Zahnstange
modul = Hoehe des Zahnkopfes ueber der Waelzgeraden
laenge = Laenge der Zahnstange
hoehe = Hoehe der Zahnstange bis zur Waelzgeraden
breite = Breite der Zaehne
eingriffswinkel = Eingriffswinkel, Standardwert = 20 grad gemaess DIN 867. Sollte nicht groesser als 45 grad sein.
schraegungswinkel = Schraegungswinkel zur Zahnstangen-Querachse; 0 grad = Geradverzahnung */
module zahnstange(modul, laenge, hoehe, breite, eingriffswinkel = 20, schraegungswinkel = 0) {
// Dimensions-Berechnungen
//modul=0.99;// modul*(1-spiel);
c = modul / 6; // Kopfspiel
mx = modul/cos(schraegungswinkel); // Durch Schraegungswinkel verzerrtes modul in x-Richtung
a = 2*mx*tan(eingriffswinkel)+c*tan(eingriffswinkel); // Flankenbreite
b = pi*mx/2-2*mx*tan(eingriffswinkel); // Kopfbreite
x = breite*tan(schraegungswinkel); // Verschiebung der Oberseite in x-Richtung durch Schraegungswinkel
nz = ceil((laenge+abs(2*x))/(pi*mx)); // Anzahl der Zaehne
translate([-pi*mx*(floor(nz/2)-1)-a-b/2,-modul,0]){
intersection(){
kopiere([1,0,0], nz, pi*mx, 0){
polyhedron(
points=[[0,-c,0], [a,2*modul,0], [a+b,2*modul,0], [2*a+b,-c,0], [pi*mx,-c,0], [pi*mx,modul-hoehe,0], [0,modul-hoehe,0], // Unterseite
[0+x,-c,breite], [a+x,2*modul,breite], [a+b+x,2*modul,breite], [2*a+b+x,-c,breite], [pi*mx+x,-c,breite], [pi*mx+x,modul-hoehe,breite], [0+x,modul-hoehe,breite]], // Oberseite
faces=[[6,5,4,3,2,1,0], // Unterseite
[1,8,7,0],
[9,8,1,2],
[10,9,2,3],
[11,10,3,4],
[12,11,4,5],
[13,12,5,6],
[7,13,6,0],
[7,8,9,10,11,12,13], // Oberseite
]
);
};
translate([abs(x),-hoehe+modul-0.5,-0.5]){
cube([laenge,hoehe+modul+1,breite+1]);
}
};
}; };
//these 4 functions are used by gear
function polar(r,theta) = r*[sin(theta), cos(theta)]; //convert polar to cartesian coordinates
function iang(r1,r2) = sqrt((r2/r1)*(r2/r1) - 1)/3.1415926*180 - acos(r1/r2); //unwind a string this many degrees to go from radius r1 to radius r2
function q7(f,r,b,r2,t,s) = q6(b,s,t,(1-f)*max(b,r)+f*r2); //radius a fraction f up the curved side of the tooth
function q6(b,s,t,d) = polar(d,s*(iang(b,d)+t)); //point at radius d on the involute curve
//a rack, which is a straight line with teeth (the same as a segment from a giant gear with a huge number of teeth).
//The "pitch circle" is a line along the X axis.
//module rack (
// mm_per_tooth = 3, //this is the "circular pitch", the circumference of the pitch circle divided by the number //of teeth
// number_of_teeth = 11, //total number of teeth along the rack
// thickness = 6, //thickness of rack in mm (affects each tooth)
// height = 120, //height of rack in mm, from tooth top to far side of rack.
// pressure_angle = 28, //Controls how straight or bulged the tooth sides are. In degrees.
// backlash = 0.0 //gap between two meshing teeth, in the direction along the circumference of the pitch circle
//) {
// assign(pi = 3.1415926)
// assign(a = mm_per_tooth / pi) //addendum
// assign(t = a*cos(pressure_angle)-1) //tooth side is tilted so top/bottom corners move this amount
// for (i = [0:number_of_teeth-1] )
// translate([i*mm_per_tooth,0,0])
// linear_extrude(height = thickness, center = true, convexity = 10)
// polygon(
// points=[
// [-mm_per_tooth * 3/4, a-height],
// [-mm_per_tooth * 3/4 - backlash, -a],
// [-mm_per_tooth * 1/4 + backlash - t, -a],
// [-mm_per_tooth * 1/4 + backlash + t, a],
// [ mm_per_tooth * 1/4 - backlash - t, a],
// [ mm_per_tooth * 1/4 - backlash + t, -a],
// [ mm_per_tooth * 3/4 + backlash, -a],
// [ mm_per_tooth * 3/4, a-height],
// ],
// paths=[[0,1,2,3,4,5,6,7]]
// );
//};
//rac note - This section generates the rack body and teeth. It is from the 11/11/15 comment by quisam2342 in thing:5505 to fix noted problems with rack generation, and replaces the original 'module rack()'
////////////////////////////////////////////////////////////////////////////////////////////////
// The module InvoluteGear_rack() gives a involute gear rack, which is a bar with teeth.
// A rack can mesh with any gear that has the same mm_per_tooth and pressure_angle.
// The "pitch circle" is a line along the X axis.
//
// mm_per_tooth this is the "circular pitch", the circumference of the pitch circle
// divided by the number of teeth
//
// number_of_teeth total number of teeth along the rack
//
// thickness thickness of rack in mm
//
// height height of rack in mm, from tooth top to far side of rack
//
// pressure_angle controls how straight or bulged the tooth sides are, in degrees
//
// clearance gap between top of a tooth on one gear and bottom of valley
// on a meshing gear, in millimeters
//
// backlash gap between two meshing teeth, in the direction along the circumference
// of the pitch circle
////////////////////////////////////////////////////////////////////////////////////////////////
module InvoluteGear_rack (
//Default numbers in this section get overridden by numbers in 'example rack and pinion' section, so set your values there.
mm_per_tooth = 3, //all meshing gears need the same mm_per_tooth
number_of_teeth = 11,
thickness = 6,
height = 4,
//rac - Added variables for backboard, stop blocks and mounting flanges:
//set your values in the 'example rack and pinion' section, as defaults given here will be overridden by that section
backboard_thickness = 2.0,
backboard_height = 1.0,
side_flange_thickness = 0,
side_flange_height = 0,
flange_offset = 0,
stop_height = backboard_height,
left_stop_enable = 1,
right_stop_enable = 1,
flange_height = 0,
left_flange_enable = 1,
right_flange_enable = 1,
//These defaults are not redefined in the example section:
pressure_angle = 28, //all meshing gears need the same pressure_angle
clearance = 0.0,
backlash = 0.0
)
{
// addendum - tooth height above pitch line
assign(addendum = module_value(mm_per_tooth) - clearance)
// dedendum - tooth height below pitch line
assign(dedendum = 1.25 * module_value(mm_per_tooth) )
for (i = [0:number_of_teeth-1] )
translate([(i+0.5)*mm_per_tooth,height-addendum,0])
linear_extrude(height = thickness, center = true, convexity = 10) //'height' parameter here is not the same as 'height' parameter of module. Here it effectively is the width or thickness as the rack is extruded from one side-face to the other.
polygon(
points=[
[-1/2 * mm_per_tooth, addendum-height],
[-1/2 * mm_per_tooth, -dedendum],
[-1/4 * mm_per_tooth + backlash - dedendum * tan(pressure_angle), -dedendum],
[-1/4 * mm_per_tooth + backlash + addendum * tan(pressure_angle), addendum],
[ 1/4 * mm_per_tooth - backlash - addendum * tan(pressure_angle), addendum],
[ 1/4 * mm_per_tooth - backlash + dedendum * tan(pressure_angle), -dedendum],
[ 1/2 * mm_per_tooth, -dedendum],
[ 1/2 * mm_per_tooth, addendum-height],
],
paths=[[0,1,2,3,4,5,6,7]]
);
//rac -added - This section optionally creates a 'stop block' at the left end of the rack
translate([(-0.11)*mm_per_tooth,0,0.5*(-thickness)])
linear_extrude(height = left_stop_enable*thickness, center = false, convexity = 10)
polygon(
points=[
[-1/2 * mm_per_tooth,height+stop_height], //stop_height extends stop block above teeth, change the number to change the extension amount
[-1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,height+stop_height], //stop_height extends stop block above teeth, change the number to change the extension amount
],
paths=[[0,1,2,3]]
);
//rac -added - This section optionally creates a 'stop block' at the right end of the rack
translate([(0.11+number_of_teeth)*mm_per_tooth,0,0.5*(-thickness)])
linear_extrude(height = right_stop_enable*thickness, center = false, convexity = 10)
polygon(
points=[
[-1/2 * mm_per_tooth,height+stop_height], //stop_height extends stop block above teeth
[-1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,height+stop_height], //stop_height extends stop block above teeth
],
paths=[[0,1,2,3]]
);
//rac -added - This section optionally creates a flange at the left rear of the rack
translate([(-0.11)*mm_per_tooth,0,0.5*(-thickness)])
linear_extrude(height = left_flange_enable*thickness, center = false, convexity = 10)
polygon(
points=[
[-1/2 * mm_per_tooth,-flange_height], //flange_height extends flange beyond rack bottom
[-1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,-flange_height], //flange_height extends flange beyond rack bottom
],
paths=[[0,1,2,3]]
);
//rac -added - This section optionally creates a flange at the right rear of the rack
translate([(0.11+number_of_teeth)*mm_per_tooth,0,0.5*(-thickness)])
linear_extrude(height = right_flange_enable*thickness, center = false, convexity = 10)
polygon(
points=[
[-1/2 * mm_per_tooth,-flange_height], //flange_height extends flange beyond rack bottom
[-1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,-flange_height], //flange_height extends flange beyond rack bottom
],
paths=[[0,1,2,3]]
);
//rac -added - This section optionally creates a 'Backboard' on one side of the rack. Can be used to add stiffness for a 'thin' rack (i.e. a rack with low height and/or thickness numbers) or if a large negative height is used it can extend under the rack as a mounting flange.
for (i = [0:number_of_teeth-1] )
translate([(i+0.5)*mm_per_tooth,0,0.5*(-thickness+backboard_thickness)])
//0.5*(-thickness+backboard_thickness) starts the backboard at one side of the rack and extrudes it inward
linear_extrude(height = backboard_thickness, center = true, convexity = 10)
polygon(
points=[
[-1/2 * mm_per_tooth,height+backboard_height], //backboard_height extends backboard above teeth
[-1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,height+backboard_height], //backboard_height extends backboard above teeth
],
paths=[[0,1,2,3]]
);
//rac -added - This section optionally creates a Rear Side-Flange on along one side of the rack. Can be used to add stiffness for a 'thin' rack (i.e. a rack with low height and/or thickness numbers) or it can be used as a mounting flange.
for (i = [0:number_of_teeth-1] )
translate([(i+0.5)*mm_per_tooth,0,0.5*(-thickness+side_flange_thickness)+flange_offset])
//0.5*(-side_flange_thickness) starts the backboard at one side of the rack and extrudes it inward. flange_offset moves the flange toward the other side of the rack
linear_extrude(height = side_flange_thickness, center = true, convexity = 10)
polygon(
points=[
[-1/2 * mm_per_tooth,-side_flange_height], //side_flange_height extends side_flange beyond rack bottom
[-1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,0],
[ 1/2 * mm_per_tooth,-side_flange_height], //side_flange_height extends backboard beyond rack bottom
],
paths=[[0,1,2,3]]
);
} }
/* Stirnrad
modul = Hoehe des Zahnkopfes ueber dem Teilkreis
zahnzahl = Anzahl der Radzaehne
breite = Zahnbreite
bohrung = Durchmesser der Mittelbohrung
eingriffswinkel = Eingriffswinkel, Standardwert = 20 grad gemaess DIN 867. Sollte nicht groesser als 45 grad sein.
schraegungswinkel = Schraegungswinkel zur Rotationsachse; 0 grad = Geradverzahnung
optimiert = Loecher zur Material-/Gewichtsersparnis bzw. Oberflaechenvergoesserung erzeugen, wenn Geometrie erlaubt (= 1, wenn wahr) */
module stirnrad(modul, zahnzahl, breite, bohrung, eingriffswinkel = 20, schraegungswinkel = 0, optimiert = true) {
//These 5 functions let the user find the derived dimensions of the gear. // Dimensions-Berechnungen
//A gear fits within a circle of radius outer_radius, and two gears should have d = modul * zahnzahl; // Teilkreisdurchmesser
//their centers separated by the sum of their pictch_radius. r = d / 2; // Teilkreisradius
function circular_pitch (mm_per_tooth=3) = mm_per_tooth; //tooth density expressed as "circular pitch" in millimeters alpha_stirn = atan(tan(eingriffswinkel)/cos(schraegungswinkel));// Schraegungswinkel im Stirnschnitt
function diametral_pitch (mm_per_tooth=3) = 3.1415926 / mm_per_tooth; //tooth density expressed as "diametral pitch" in teeth per millimeter db = d * cos(alpha_stirn); // Grundkreisdurchmesser
function module_value (mm_per_tooth=3) = mm_per_tooth / 3.1415926; //tooth density expressed as "module" or "modulus" in millimeters rb = db / 2; // Grundkreisradius
function pitch_radius (mm_per_tooth=3,number_of_teeth=11) = mm_per_tooth * number_of_teeth / 3.1415926 / 2; da = (modul <1)? d + modul * 2.2 : d + modul * 2; // Kopfkreisdurchmesser nach DIN 58400 bzw. DIN 867
function outer_radius (mm_per_tooth=3,number_of_teeth=11,clearance=0.1) //The gear fits entirely within a cylinder of this radius. ra = da / 2; // Kopfkreisradius
= mm_per_tooth*(1+number_of_teeth/2)/3.1415926 - clearance; c = (zahnzahl <3)? 0 : modul/6; // Kopfspiel
df = d - 2 * (modul + c); // Fusskreisdurchmesser
rf = df / 2; // Fusskreisradius
rho_ra = acos(rb/ra); // maximaler Abrollwinkel;
// Evolvente beginnt auf Grundkreis und endet an Kopfkreis
rho_r = acos(rb/r); // Abrollwinkel am Teilkreis;
// Evolvente beginnt auf Grundkreis und endet an Kopfkreis
phi_r = grad(tan(rho_r)-radian(rho_r)); // Winkel zum Punkt der Evolvente auf Teilkreis
gamma = rad*breite/(r*tan(90-schraegungswinkel)); // Torsionswinkel fuer Extrusion
schritt = rho_ra/16; // Evolvente wird in 16 Stuecke geteilt
tau = 360/zahnzahl; // Teilungswinkel
r_loch = (2*rf - bohrung)/8; // Radius der Loecher fuer Material-/Gewichtsersparnis
rm = bohrung/2+2*r_loch; // Abstand der Achsen der Loecher von der Hauptachse
z_loch = floor(2*pi*rm/(3*r_loch)); // Anzahl der Loecher fuer Material-/Gewichtsersparnis
optimiert = (optimiert && r >= breite*1.5 && d > 2*bohrung); // ist Optimierung sinnvoll?
// Zeichnung
union(){
rotate([0,0,-phi_r-90*(1-spiel)/zahnzahl]){ // Zahn auf x-Achse zentrieren;
// macht Ausrichtung mit anderen Raedern einfacher
linear_extrude(height = breite, twist = gamma){
difference(){
union(){
zahnbreite = (180*(1-spiel))/zahnzahl+2*phi_r;
circle(rf); // Fusskreis
for (rot = [0:tau:360]){
rotate (rot){ // "Zahnzahl-mal" kopieren und drehen
polygon(concat( // Zahn
[[0,0]], // Zahnsegment beginnt und endet im Ursprung
[for (rho = [0:schritt:rho_ra]) // von null Grad (Grundkreis)
// bis maximalen Evolventenwinkel (Kopfkreis)
pol_zu_kart(ev(rb,rho))], // Erste Evolventen-Flanke
[pol_zu_kart(ev(rb,rho_ra))], // Punkt der Evolvente auf Kopfkreis
[for (rho = [rho_ra:-schritt:0]) // von maximalen Evolventenwinkel (Kopfkreis)
// bis null Grad (Grundkreis)
pol_zu_kart([ev(rb,rho)[0], zahnbreite-ev(rb,rho)[1]])]
// Zweite Evolventen-Flanke
// (180*(1-spiel)) statt 180 Grad,
// um Spiel an den Flanken zu erlauben
)
);
}
}
}
circle(r = rm+r_loch*1.49); // "Bohrung"
}
}
}
// mit Materialersparnis
if (optimiert) {
linear_extrude(height = breite){
difference(){
circle(r = (bohrung+r_loch)/2);
circle(r = bohrung/2); // Bohrung
}
}
linear_extrude(height = (breite-r_loch/2 < breite*2/3) ? breite*2/3 : breite-r_loch/2){
difference(){
circle(r=rm+r_loch*1.51);
union(){
circle(r=(bohrung+r_loch)/2);
for (i = [0:1:z_loch]){
translate(kugel_zu_kart([rm,90,i*360/z_loch]))
circle(r = r_loch);
}
}
}
}
}
// ohne Materialersparnis
else {
linear_extrude(height = breite){
difference(){
circle(r = rm+r_loch*1.51);
circle(r = bohrung/2);
}
}
}
}
}
/* Zahnstange und Ritzel
modul = Hoehe des Zahnkopfes ueber dem Teilkreis
laenge_stange = Laenge der Zahnstange
zahnzahl_ritzel = Anzahl der Radzaehne am Ritzel
hoehe_stange = Hoehe der Zahnstange bis zur Waelzgeraden
bohrung_ritzel = Durchmesser der Mittelbohrung des Ritzels
breite = Breite der Zaehne
eingriffswinkel = Eingriffswinkel, Standardwert = 20 grad gemaess DIN 867. Sollte nicht groesser als 45 grad sein.
schraegungswinkel = Schraegungswinkel, Standardwert = 0 grad (Geradverzahnung)
optimiert = Loecher zur Material-/Gewichtsersparnis bzw. Oberflaechenvergoesserung erzeugen, wenn Geometrie erlaubt (= 1, wenn wahr)
Rack and Pinion
module = Height of the tooth head above the pitch circle
rack_length = Length of the rack
pinion_tooth_count = Number of teeth on the pinion
rack_height = Height of the rack up to the pitch line
pinion_bore = Diameter of the central bore of the pinion
width = Width of the teeth
contact_angle = Contact angle, default value = 20 degrees according to DIN 867. Should not exceed 45 degrees.
helix_angle = Helix angle, default value = 0 degrees (straight tooth)
optimized = Generate holes for material/weight saving or surface enhancement if geometry allows (= 1 if true)
*/
module zahnstange_und_rad (modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel=20, schraegungswinkel=0, zusammen_gebaut=true, optimiert=true) {
abstand = zusammen_gebaut? modul*zahnzahl_ritzel/2 : modul*zahnzahl_ritzel;
zahnstange(modul, laenge_stange, hoehe_stange, breite, eingriffswinkel, -schraegungswinkel);
}
module rad_und_zahnstange (modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel=20, schraegungswinkel=0, zusammen_gebaut=true, optimiert=true) {
abstand = zusammen_gebaut? modul*zahnzahl_ritzel/2 : modul*zahnzahl_ritzel;
translate([0, abstand, 0]) {
if (istgerade(zahnzahl_ritzel)) {
rotate(90 + 180/zahnzahl_ritzel) {
stirnrad (modul, zahnzahl_ritzel, breite, bohrung_ritzel, eingriffswinkel, schraegungswinkel, optimiert);
}
} else {
rotate(a=90) {
stirnrad (modul, zahnzahl_ritzel, breite, bohrung_ritzel, eingriffswinkel, schraegungswinkel, optimiert);
}
}
}
}
//zahnstange_und_rad (modul, laenge_stange, zahnzahl_ritzel, hoehe_stange, bohrung_ritzel, breite, eingriffswinkel, schraegungswinkel, zusammen_gebaut, optimiert);