module tube(o = 1, i = 0, h = 1, center = false, $fn = 12) { $fn = $fn; union () { difference () { cylinder(r = o, h = h, center = center); cylinder(r = i, h = h, center = center); } } } module rounded_cube (cube_arr = [1, 1, 1], d = 0, center = false) { off_x = 0; off_y = 0; r = d/2; union () { cube([cube_arr[0] - d, cube_arr[1], cube_arr[2]], center = center); cube([cube_arr[0], cube_arr[1] - d, cube_arr[2]], center = center); translate ([1 * (cube_arr[0] / 2) - r , 1 * (cube_arr[1] / 2)- r, 0]) cylinder(r = r, h = cube_arr[2], center = center); translate ([-1 * (cube_arr[0] / 2) + r, -1 * (cube_arr[1] / 2) + r, 0]) cylinder(r = r, h = cube_arr[2], center = center); translate ([1 * (cube_arr[0] / 2) - r, -1 * (cube_arr[1] / 2) + r, 0]) cylinder(r = r, h = cube_arr[2], center = center); translate ([-1 * (cube_arr[0] / 2) + r, 1 * (cube_arr[1] / 2)- r, 0]) cylinder(r = r, h = cube_arr[2], center = center); } } module c_battery () { /* C Cell battery, 26.1 × 50 */ x = 26.1; x_fuzz = .3; y = 50; y_fuzz = 2; cylinder(r = (x + x_fuzz) / 2, h = y + y_fuzz, center = true); } module sub_c_battery () { /* Sub C Cell battery, 22.2 × 42.9 */ x = 22.2; x_fuzz = .3; y = 42.9; y_fuzz = 2; cylinder(r = (x + x_fuzz) / 2, h = y + y_fuzz, center = true); } module hex (r = 1, h = 1, center = false) { cylinder(r = r, h = h, center = center, $fn = 6); } module triangle (a = 1, b = 1, c = 1, h = 1, center = false) { } module cone_45 (d = 1, center = false) { cylinder(r1 = d/2, r2 = 0, h = d, center = center); } module decoys (d = 10, z = 0, number = 4, cube_size = 4, debug = false) { for (i = [0: number]) { rotate([0, 0, (360/number) * i]) translate([d, 0, z]) cube([cube_size, cube_size, cube_size], center = true); if (debug && i == 0) { rotate([0, 0, (360/number) * i]) translate([d, 0, z]) cube([cube_size * 5, cube_size* 5, cube_size], center = true); } } } ////////////////////////////////////////////////////////////////////////////////////////////// // Paraboloid module for OpenScad // // Copyright (C) 2013 Lochner, Juergen // http://www.thingiverse.com/Ablapo/designs // // This program is free software. It is // licensed under the Attribution - Creative Commons license. // http://creativecommons.org/licenses/by/3.0/ ////////////////////////////////////////////////////////////////////////////////////////////// module paraboloid (y=10, f=5, rfa=0, fc=1, detail=44){ // y = height of paraboloid // f = focus distance // fc : 1 = center paraboloid in focus point(x=0, y=f); 0 = center paraboloid on top (x=0, y=0) // rfa = radius of the focus area : 0 = point focus // detail = $fn of cone hi = (y+2*f)/sqrt(2); // height and radius of the cone -> alpha = 45° -> sin(45°)=1/sqrt(2) x =2*f*sqrt(y/f); // x = half size of parabola translate([0,0,-f*fc]) // center on focus rotate_extrude(convexity = 10,$fn=detail ) // extrude paraboild translate([rfa,0,0]) // translate for fokus area difference(){ union(){ // adding square for focal area projection(cut = true) // reduce from 3D cone to 2D parabola translate([0,0,f*2]) rotate([45,0,0]) // rotate cone 45° and translate for cutting translate([0,0,-hi/2])cylinder(h= hi, r1=hi, r2=0, center=true, $fn=detail); // center cone on tip translate([-(rfa+x ),0]) square ([rfa+x , y ]); // focal area square } translate([-(2*rfa+x ), -1/2]) square ([rfa+x ,y +1] ); // cut of half at rotation center } } //Spiral Notes //------------------------------------------------------------------- //Height = center to center height of the end spheres which form the spirals. Ends will need to be flattened by the user as desired. Actual height of the rendering is Height+2*baseRadius //Radius = the maximum distance from the axis of the spiral (the z axis) to the center of the sphere(s) forming the spiral //baseRadius = cross sectional radius of the spiral //frequency = the number of complete revolutions about the axis made by the spiral, whole numbers will result in spirals whose tops end directly above their bases //resolution = integer number of spheres, not to be confused with $fn. The greater the number of spheres, the smoother the spiral will be (also longer render times!). Recommended that this number be 8*frequency or greater. //numSpirals = integer number of spirals used in the spiralMulti modules spaced evenly around the axis (3 spirals are spaced 120 degrees apart, 4 spirals: 90 degrees apart, etc.) //Instructions //------------------------------------------------------------------ //1. Place spiral.scad in the "libraries" folder of your openscad installation. Find the libraries folder by File -> Show Library Folder... //2. Then create a new or open one of your existing scad files and include spiral.scad with the following code: //use; //3. Then call the modules in your files with code similar to the following: //spiral(20,20,3,1,25); //spiralCone(20,20,3,1,25); //spiralEllipse(20,20,3,1,25); //spiralMulti(20,20,3,1,25,3); //spiralMultiCone(20,20,3,1,25,3); //spiralMultiEllipse(40,60,3,1,32,3); //------------------------------------------------------------- //simple spiral module spiral (height = 20, Radius = 20, baseRadius = 3, frequency = 1, resolution = 25, $fn=50) { union(){ translate ([0,0,-(height/2)]) { for(i=[0:resolution-2]){ hull(){ rotate ([0,0,frequency*360/(resolution-1)*i]) translate ([Radius,0,i*height/(resolution-1)]) sphere(r=baseRadius, center=true); rotate ([0,0,frequency*360/(resolution-1)*(i+1)]) translate ([Radius,0,(i+1)*height/(resolution-1)]) sphere(r=baseRadius,center=true); } } } } } //cone spiral module spiralCone(height=20,Radius=20,baseRadius=3,frequency=1,resolution=25, $fn=50) { union(){ translate ([0,0,-(height/2)]) { for(i=[0:resolution-2]){ hull(){ rotate ([0,0,frequency*360/(resolution-1)*i]) translate ([Radius-(i-1)*Radius/resolution,0,i*height/(resolution-1)]) sphere(r=baseRadius, center=true); rotate ([0,0,frequency*360/(resolution-1)*(i+1)]) translate ([Radius-i*Radius/resolution,0,(i+1)*height/(resolution-1)]) sphere(r=baseRadius,center=true); } } } } } //ellipse spiral module spiralEllipse(height=20,Radius=20,baseRadius=3,frequency=1,resolution=25, $fn=50) { union(){ translate ([0,0,-(height/2)]) { for(i=[0:resolution-2]){ hull(){ rotate ([0,0,frequency*360/(resolution-1)*i]) translate ([Radius*sqrt(1-(i/(resolution-1)*(i/(resolution-1)))),0,i*height/(resolution-1)]) sphere(r=baseRadius, center=true); rotate ([0,0,frequency*360/(resolution-1)*(i+1)]) translate ([Radius*sqrt(1-((i+1)/(resolution-1)*((i+1)/(resolution-1)))),0,(i+1)*height/(resolution-1)]) sphere(r=baseRadius,center=true); } } } } } // Multiple spirals arranged radially around the axis module spiralMulti(height=20,Radius=20,baseRadius=3,frequency=1,resolution=25,numSpirals=3,$fn=50) { shiftAngle=360/numSpirals; for(total=[0:numSpirals-1]) { union(){ translate ([0,0,-(height/2)]) { for(i=[0:resolution-2]){ hull(){ rotate ([0,0,frequency*360/(resolution-1)*i+shiftAngle*total]) translate ([Radius,0,i*height/(resolution-1)]) sphere(r=baseRadius, center=true); rotate ([0,0,frequency*360/(resolution-1)*(i+1)+shiftAngle*total]) translate ([Radius,0,(i+1)*height/(resolution-1)]) sphere(r=baseRadius,center=true); } } } } } } // Multiple spirals arranged radially around the axis tapering in towards the axis module spiralMultiCone(height=20,Radius=20,baseRadius=3,frequency=1,resolution=25,numSpirals=3,$fn=50) { shiftAngle=360/numSpirals; for(total=[0:numSpirals-1]) { union(){ translate ([0,0,-(height/2)]) { for(i=[0:resolution-2]){ hull(){ rotate ([0,0,frequency*360/(resolution-1)*i+shiftAngle*total]) translate ([Radius-(i-1)*Radius/resolution,0,i*height/(resolution-1)]) sphere(r=baseRadius, center=true); rotate ([0,0,frequency*360/(resolution-1)*(i+1)+shiftAngle*total]) translate ([Radius-i*Radius/resolution,0,(i+1)*height/(resolution-1)]) sphere(r=baseRadius,center=true); } } } } } } //multiple ellipse spiral module spiralMultiEllipse(height=20,Radius=20,baseRadius=3,frequency=1,resolution=25,numSpirals=3,$fn=50) { shiftAngle=360/numSpirals; for(total=[0:numSpirals-1]) { union(){ translate ([0,0,-(height/2)]) { for(i=[0:resolution-2]){ hull(){ rotate ([0,0,frequency*360/(resolution-1)*i+shiftAngle*total]) translate ([Radius*sqrt(1-(i/(resolution-1)*(i/(resolution-1)))),0,i*height/(resolution-1)]) sphere(r=baseRadius, center=true); rotate ([0,0,frequency*360/(resolution-1)*(i+1)+shiftAngle*total]) translate ([Radius*sqrt(1-((i+1)/(resolution-1)*((i+1)/(resolution-1)))),0,(i+1)*height/(resolution-1)]) sphere(r=baseRadius,center=true); } } } } } }