//GNAL Shared Library include <./path_extrude.scad>; include <./threads.scad>; /** * THREADS * TOP (large screw) * metric_thread (diameter=13.6, pitch=1.5 ,thread_size = 1.6, length = 21); * TOP VOID * metric_thread (diameter=13.6 + .5, pitch=1.5, thread_size = 1.6, length = 21); * + clone translated along Z by 0.2mm * BOTTOM (small screw) * metric_thread (diameter=10, pitch=1.5, thread_size = 1.6, length=LEN); */ OD = 10 + .5; PITCH = 1.5; THREAD = 1.6; LEN = 21; INSERT_D = 26; /** * Core (center of the reel) **/ module gnal_spiral_core () { $fn = 360; core_center_h = 4.2 + 3;; core_bottom_outer_d = 53; core_bottom_outer_void_d = 44; core_bottom_outer_h = 4.2; core_d = 29.5; core_h = 8.5; core_bottom_d = 26; core_bottom_h = 4.2; top_z_offset = (core_h / 2) - (core_center_h / 2); core_void_outer_d = 20.5; core_void_inner_d = 14.5; core_void_h = 11.5; arms_outer_d = 48; arms_inner_d = 48 - 7; void_d = 18; film_void = 0.6; difference () { union() { //center translate([0, 0, -core_center_h / 2]) { cylinder(r = (core_bottom_outer_d - 1) / 2, h = core_center_h, center = true); } //top translate([0, 0, top_z_offset]) { cylinder(r = core_d / 2, h = core_h + core_center_h, center = true); } } cylinder(r = void_d / 2, h = 30, center = true); translate([0, 0, -7.2]) spiral_bottom_insert_void(); } //arms difference () { union () { translate([0, 0, top_z_offset]) difference() { //adjusted arm (shorter) intersection () { cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true); translate([1, 0, 0]) cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true); } intersection () { cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true); translate([1, 0, 0]) cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true); } translate([0, arms_outer_d / 2, 0]) cube([arms_outer_d, arms_outer_d, arms_outer_d], center = true); } //rounded arm end translate([(arms_outer_d + arms_inner_d) / 4, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40); //adjusted arm translate([-((arms_outer_d + arms_inner_d) / 4) + 1, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40); difference () { rotate([0, 0, -120]) translate([13.75, 0, top_z_offset]) cube([16, 20, core_h + core_center_h], center = true); //remove piece from adjusted arm translate([-19, -14, 0]) rotate([0, 0, 10]) cube([4, 4, 30], center = true); //remove piece from non-adjusted arm rotate([0, 0, 45]) translate([-19, -14, 0]) rotate([0, 0, -10]) cube([4, 4, 30], center = true); rotate([0, 0, -120 - 37]) translate([18, 0, top_z_offset]) { cylinder(r = 6.8 / 2, h = 30, center = true); translate([-4, -2, 0]) cube([4, 4, 30], center = true); } rotate([0, 0, -120 + 37]) translate([18, 0, top_z_offset]) { cylinder(r = 6.8 / 2, h = 30, center = true); translate([-4, 2, 0]) cube([4, 4, 30], center = true); } } } //film void (notches) rotate([0, 0, -120]) { translate([20, -5, 0]) { rotate([0, 0, 45]) { cube([20, film_void, 30], center = true); } } } rotate([0, 0, -120]) { translate([20, 5, 0]) { rotate([0, 0, -45]) { cube([20, film_void, 30], center = true); } } } //flatten piece rotate([0, 0, -120]) translate([25, 0, 0]) difference () { cylinder(r = 8 / 2, h = 30, center = true); translate([-6.9, 0, 0]) cube([8, 8, 30], center = true); } cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true); rotate([0, 0, -120]) translate([20, 0, -1.5]) rotate([0, 0, 45]) cube([20, 20, 3.01], center = true); cylinder(r = void_d / 2, h = 30, center = true); translate([0, 0, -7.2]) spiral_bottom_insert_void(); } } module spiral_bottom_insert_void () { intersection () { rotate([0, 45, 0]) cube([3, INSERT_D + 2, 3], center = true); cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true); } intersection () { rotate([0, 45, 90]) cube([3, INSERT_D + 2, 3], center = true); cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true); } } module spiral_bottom_insert_s8 () { $fn = 160; void_d = 18 - .3; H = 17; D2 = INSERT_D; translate([0, 0, 0]) difference () { union () { cylinder(r = void_d / 2, h = H, center = true); //skirt translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true); //notches translate([0, 0, -((H - 2.5) / 2) - .1]) { intersection () { cylinder(r = D2 / 2, h = 6, center = true); difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } intersection () { cylinder(r = D2 / 2, h = 6, center = true); rotate([0, 0, 90]) difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } } } translate([0, 0, -LEN / 2]) metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN); } } module spiral_bottom_insert_16 () { $fn = 160; void_d = 18 - .3; H = 17 + 8; D2 = INSERT_D; RIDGES = 8; RIDGE_D = 3; translate([0, 0, 0]) difference () { union () { cylinder(r = void_d / 2, h = H, center = true); //skirt translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true); //notches translate([0, 0, -((H - 2.5) / 2) - .1]) { intersection () { cylinder(r = D2 / 2, h = 6, center = true); difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } intersection () { cylinder(r = D2 / 2, h = 6, center = true); rotate([0, 0, 90]) difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } } } translate([0, 0, -(H / 2) - 2]) metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN + 8); translate([0, 0, 8.5]) { for (i = [0: RIDGES - 1]) { rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8.1, center = true); } } } } /** * Spacers **/ module spacer_ridges () { ridges = 16; for (i = [0 : ridges]) { rotate([0, 0, i * (360 / ridges)]) translate([13.5, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60); } } module spacer_ridges_loose () { ridges = 16; intersection () { union () { for (i = [0 : ridges]) { rotate([0, 0, i * (360 / ridges)]) translate([13.7, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60); } } cylinder(r = 13.7, h = 12, center = true); } } module spacer_outer_ridges () { ridges = 24; H = 6.5; difference () { union () { for (i = [0 : ridges]) { rotate([0, 0, i * (360 / ridges)]) translate([14.6, 0, -4.75]) cylinder(r = 1.25, h = 8, $fn = 30); } } translate([0, 0, -4.1]) difference () { cylinder(r = 33 / 2, h = 4, center = true, $fn = 100); cylinder(r2 = 33 / 2, r1 = 27.75 / 2, h = 4.1, center = true, $fn = 100); } } } module spacer () { add = 3.25; core_d = 29.5; core_bottom_d = 26.2 + .2; void_d = 22.5; h = 8 + add; translate([0, 0, (add / 2) - 1]) difference () { union () { difference () { cylinder(r = core_d / 2, h = h, center = true, $fn = 200); translate([0, 0, 8]) cylinder(r = core_bottom_d / 2, h = h, center = true, $fn = 200); cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200); } translate([0, 0, 0]) spacer_ridges_loose(); spacer_outer_ridges(); } //trim top translate([0, 0, h - 0.1]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200); //trim bottom translate([0, 0, -h + 0.9]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200); //finger grips //translate([0, 24, 0]) rotate([-6, 0, 0]) cylinder(r = 10, h = 6, center = true, $fn = 100); //translate([0, -24, 0]) rotate([6, 0, 0]) cylinder(r = 10, h = 6, center = true, $fn = 100); } } module spacer_16 () { core_d = 29.5; core_bottom_d = 26.2 + .2; void_d = 18; h = 8; RIDGES = 8; RIDGE_D = 3; translate([0, 0, 0]) difference () { union () { difference () { cylinder(r = core_d / 2, h = h, center = true, $fn = 200); cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200); } translate([0, 0, -.75]) rotate([0, 180, 0]) spacer_outer_ridges(); } } translate([0, 0, 0]) { for (i = [0: RIDGES - 1]) { rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8, center = true); } } } /** * Spokes **/ module triangle_void () { length = (81 / 2) - 9; width = 12; height = 4.5 + 2.7; ANGLE_A = 34.8; ANGLE_B = 180 / SPOKE_COUNT; difference () { translate([-1, 0, 0]) cube([length, width, height], center = true); translate([0, 10.3, 0]) rotate([0, 0, ANGLE_B]) cube([length * 2, width, height + 1], center = true); translate([0, -10.3, 0]) rotate([0, 0, -ANGLE_B]) cube([length * 2, width, height + 1], center = true); translate([0, 10.3, -.7]) rotate([ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true); translate([0, -10.3, -.7]) rotate([-ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true); } } module triangle_void_2 () { length = 43 - 8; width = 12; height = 4.5 + 2.7; ANGLE_A = 34.8; ANGLE_B = 90 / SPOKE_COUNT; angle_w = 10.2; difference () { translate([-1, 0, 0]) cube([length, width, height], center = true); translate([0, angle_w, 0]) rotate([0, 0, ANGLE_B]) cube([length *2, width, height * 10], center = true); translate([0, -angle_w, 0]) rotate([0, 0, -ANGLE_B]) cube([length *2, width, height * 10], center = true); translate([0, angle_w, -.7]) rotate([ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true); translate([0, -angle_w, -.7]) rotate([-ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true); } } module triangle_void_3 () { length = 32; width = 10; height = 4.5 + 2.7; ANGLE_A = 31; ANGLE_B = 45 / SPOKE_COUNT; angle_w = 7.8; difference () { translate([-1, 0, 0]) cube([length, width, height], center = true); translate([0, angle_w, 0]) rotate([0, 0, ANGLE_B]) cube([length *2, width, height * 10], center = true); translate([0, -angle_w, 0]) rotate([0, 0, -ANGLE_B]) cube([length *2, width, height * 10], center = true); translate([0, angle_w, -.7]) rotate([ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true); translate([0, -angle_w, -.7]) rotate([-ANGLE_A, 0, 0]) cube([length *2, width, height * 10], center = true); } } /** * Spiral Generation Modules */ module spirals_old (count = 40, start_d = 48, spacing = 2) { facet_size = 30; bottom = 1.2; top = .3; top_offset = (bottom - top); h = 2.2; od = start_d + (spacing * 2 * count); echo("SPIRAL LENGTH", PI * count * (od + start_d + 1) / 2); echo("OUTER D", od); facetProfile = [[0, 0], [top_offset, -h], [bottom, -h], [bottom, 0]]; union () { for (s = [0 : count - 1]) { d = start_d + (s * spacing * 2); c = PI * pow(d / 2, 2); $fn = ceil( c / facet_size ); angle_i = 360 / $fn; increment = spacing / $fn; spiralPath = [ for(t = [0 : $fn + 1]) [((d / 2) + (t * increment)) * cos(t * angle_i), ((d / 2) + (t * increment)) * sin(t * angle_i), 0] ]; path_extrude(exShape=facetProfile, exPath=spiralPath); } } } /** * InwardSpiral code provided by Les Smith * * https://gist.github.com/sixteenmillimeter/839c16d39d26d04154f52b3f3ee6ee78 **/ module ShapeToExtrude () { bottom = -7.1; w = 1.2; top_w = .4; top_offset = (w - top_w); h = 2.2; // Build in +x space. The outside edge of this shape must follow the extrusion path, or there will be open seams.. polygon ( points= [ [w, bottom], [0, bottom], [0, 0], [top_offset, h], [w, h], [w, 0] ]); } module InwardSpiral (StepSize, Steps, StartRadius, Pitch, ShapeX) { for (i=[0 : Steps - 1]) { // This could be made more computationally efficient // by collapsing intermediate values and by doing only // essential calculations inside the loop, but for now // let's just leave it easy to read. ThisTheta = StepSize * i; NextTheta = StepSize * (i + 1); ThisRadius = StartRadius - i * (Pitch * (StepSize / 360)); // Spiral step approximated by arc of radius ThisRadius, // passing through the start and end points calculated here. NextRadius = StartRadius - (i + 1) * (Pitch * (StepSize / 360)); ThisX = ThisRadius * sin(ThisTheta); ThisY = ThisRadius * cos(ThisTheta); NextX = NextRadius * sin(NextTheta); NextY = NextRadius * cos(NextTheta); DeltaX = NextX - ThisX; DeltaY = NextY - ThisY; SlopeToNext = DeltaY / DeltaX; BisecSlope = -1 / SlopeToNext; ThisXYToBisector = sqrt(DeltaX * DeltaX + DeltaY * DeltaY) / 2; BisectX = ThisX + (DeltaX / 2); BisectY = ThisY + (DeltaY / 2); BisectToCentre = sqrt(pow(ThisRadius, 2) - pow(ThisXYToBisector, 2)); AbsXComponent = sqrt(pow(BisectToCentre, 2) / ( 1 + pow(BisecSlope, 2))); XComponent = NextY < ThisY ? AbsXComponent: -AbsXComponent; YComponent = XComponent * BisecSlope; CentreX = BisectX - XComponent; CentreY = BisectY - YComponent; ExtrudeAngle = -2 * acos(BisectToCentre / ThisRadius); ArcOrientation = NextY < ThisY ? atan(BisecSlope) - (ExtrudeAngle / 2) : -180 + atan(BisecSlope) -(ExtrudeAngle / 2); translate([CentreX, CentreY, 0]) { rotate ([0, 0, ArcOrientation]) { rotate_extrude (angle=ExtrudeAngle, $fn=300) translate ([ThisRadius - ShapeX, 0, 0])ShapeToExtrude(); } } } }