//GNAL v3 Shared Library include <./path_extrude.scad>; include <./threads.scad>; include <./Triangles.scad>; /** * THREADS * TOP (large screw) * metric_thread (diameter=13.6, pitch=1.5 ,thread_size = 1.6, length = 21); * TOP VOID * metric_thread (diameter=13.6 + .5, pitch=1.5, thread_size = 1.6, length = 21); * + clone translated along Z by 0.2mm * BOTTOM (small screw) * metric_thread (diameter=10, pitch=1.5, thread_size = 1.6, length=LEN); * SINGLE LEVEL (middle screw) * */ DEBUG = false; FINE = 200; OD = 10 + .5; PITCH = 1.5; THREAD = 1.6; LEN = 21; INSERT_D = 26; SINGLE_THREAD_D = 12; function X (start_r, spacing, fn, r, i) = (start_r + (r * spacing) + (i * calcIncrement(spacing, fn))) * cos(i * calcAngle(fn)); function Y (start_r, spacing, fn, r, i) = (start_r + (r * spacing) + (i * calcIncrement(spacing, fn))) * sin(i * calcAngle(fn)); function circ (d) = PI * d; function calcFacetSize (end_d, fn) = circ( end_d ) / fn; //function calcSteps(rotations, fn) = fn * rotations; function calcAngle (fn) = 360 / fn; function calcFn(start_d, start_fn, end_d, spacing, r) = start_fn + ( ((circ(calcR(start_d, spacing, r) * 2) - circ(start_d) ) / (circ(end_d) - circ(start_d))) * ($fn - start_fn)); function calcR(start_d, spacing, r) = (start_d / 2) + (spacing * r); function calcIncrement(spacing, fn) = spacing / fn; /** * spiral_7 - Combination of spiral_3 and spiral_4 that doesn't sacrifice * performance. Hits an overflow when $fn is higher than 245 which creates * 8418 vectors at 60 rotations. This is an edge case, only appearing in OpenSCAD * 2019.05 (and maybe earlier), but should be explored. **/ module spiral (rotations = 40, start_d = 48, spacing = 2.075, bottom = -7.1, fn) { diam = (rotations * spacing * 2) + start_d; echo("DIAM", diam); echo("SPIRAL", rotations * PI * ((start_d + diam) / 2)); //bottom = -7.1; w = 1.4; top_w = .8; top_offset = (w - top_w); h = 2.2; facetProfile = [ [w, -bottom], [0, -bottom], [0, 0], [top_offset, -h], [w, -h], [w, 0] ]; end_d = start_d + (spacing * 2 * rotations); end_r = end_d / 2; start_r = start_d / 2; facetSize = calcFacetSize(end_d, fn); start_fn = round(circ(start_d) / facetSize); spiralPath = [ for (r = [0 : rotations - 1]) for (i = [0 : round(calcFn(start_d, start_fn, end_d, spacing, r )) - 1 ]) [ X(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i), Y(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i), 0] ]; path_extrude(exShape=facetProfile, exPath=spiralPath); } module spiral_reinforcement ( start_d = 48, spacing = 2.075, bottom = -2, fn) { rotations = 1; w = 1; top_w = .8; top_offset = (w - top_w); h = 2.2; facetProfile = [ [w, -bottom], [0, -bottom], [0, 0], [0, -h], [w, -h], [w, 0] ]; end_d = start_d + (spacing * 2 * rotations); end_r = end_d / 2; start_r = start_d / 2; facetSize = calcFacetSize(end_d, fn); start_fn = round(circ(start_d) / facetSize); spiralPath = [ for (r = [0 : rotations - 1]) for (i = [0 : round(calcFn(start_d, start_fn, end_d, spacing, r )) - 1 ]) [ X(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i), Y(start_r, spacing, round(calcFn(start_d, start_fn, end_d, spacing, r )), r, i), 0] ]; path_extrude(exShape=facetProfile, exPath=spiralPath); } /** * Core (center of the reel) **/ module gnal_spiral_core () { $fn = 360; core_center_h = 4.2 + 3;; core_bottom_outer_d = 53; core_bottom_outer_void_d = 44; core_bottom_outer_h = 4.2; core_d = 29.5; core_h = 8.5; core_bottom_d = 26; core_bottom_h = 4.2; top_z_offset = (core_h / 2) - (core_center_h / 2); core_void_outer_d = 20.5; core_void_inner_d = 14.5; core_void_h = 11.5; arms_outer_d = 48; arms_inner_d = 48 - 7; void_d = 18; film_void = 0.6; difference () { union() { //center translate([0, 0, -core_center_h / 2]) { cylinder(r = (core_bottom_outer_d - 1) / 2, h = core_center_h, center = true); } //top translate([0, 0, top_z_offset]) { cylinder(r = core_d / 2, h = core_h + core_center_h, center = true); } } cylinder(r = void_d / 2, h = 30, center = true); translate([0, 0, -7.2]) spiral_insert_void(); } //arms difference () { union () { translate([0, 0, top_z_offset]) difference() { //adjusted arm (shorter) intersection () { cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true); translate([1, 0, 0]) cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true); } intersection () { cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true); translate([1, 0, 0]) cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true); } translate([0, arms_outer_d / 2, 0]) cube([arms_outer_d, arms_outer_d, arms_outer_d], center = true); } //rounded arm end translate([(arms_outer_d + arms_inner_d) / 4, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40); //adjusted arm translate([-((arms_outer_d + arms_inner_d) / 4) + 1, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40); difference () { rotate([0, 0, -120]) translate([13.75, 0, top_z_offset]) cube([16, 20, core_h + core_center_h], center = true); //remove piece from adjusted arm translate([-19, -14, 0]) rotate([0, 0, 10]) cube([4, 4, 30], center = true); //remove piece from non-adjusted arm rotate([0, 0, 45]) translate([-19, -14, 0]) rotate([0, 0, -10]) cube([4, 4, 30], center = true); rotate([0, 0, -120 - 37]) translate([18, 0, top_z_offset]) { cylinder(r = 6.8 / 2, h = 30, center = true); translate([-4, -2, 0]) cube([4, 4, 30], center = true); } rotate([0, 0, -120 + 37]) translate([18, 0, top_z_offset]) { cylinder(r = 6.8 / 2, h = 30, center = true); translate([-4, 2, 0]) cube([4, 4, 30], center = true); } } } //film void (notches) rotate([0, 0, -120]) { translate([20, -5, 0]) { rotate([0, 0, 45]) { cube([20, film_void, 30], center = true); } } } rotate([0, 0, -120]) { translate([20, 5, 0]) { rotate([0, 0, -45]) { cube([20, film_void, 30], center = true); } } } //flatten piece rotate([0, 0, -120]) translate([25, 0, 0]) difference () { cylinder(r = 8 / 2, h = 30, center = true); translate([-6.9, 0, 0]) cube([8, 8, 30], center = true); } cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true); rotate([0, 0, -120]) translate([20, 0, -1.5]) rotate([0, 0, 45]) cube([20, 20, 3.01], center = true); cylinder(r = void_d / 2, h = 30, center = true); translate([0, 0, -7.2]) spiral_insert_void(); } } module spiral_insert_void () { intersection () { rotate([0, 45, 0]) cube([3, INSERT_D + 2, 3], center = true); cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true); } intersection () { rotate([0, 45, 90]) cube([3, INSERT_D + 2, 3], center = true); cylinder(r = (INSERT_D + 1) / 2, h = 6, center = true); } } module gnal_spiral_bottom_insert_s8 () { $fn = 160; OD = 10.5 + .3; void_d = 18 - .6; H = 17; D2 = INSERT_D; translate([0, 0, 0]) difference () { union () { cylinder(r = void_d / 2, h = H, center = true); //skirt translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true); //notches translate([0, 0, -((H - 2.5) / 2) - .1]) { intersection () { cylinder(r = D2 / 2, h = 6, center = true); difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } intersection () { cylinder(r = D2 / 2, h = 6, center = true); rotate([0, 0, 90]) difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } } } translate([0, 0, -LEN / 2]) { if (DEBUG) { cylinder(r = OD / 2, h = LEN); } else { metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN); } } } } module gnal_spiral_bottom_insert_16 () { $fn = 160; OD = 10.5 + .3; void_d = 18 - .6; H = 17 + 8; D2 = INSERT_D; RIDGES = 8; RIDGE_D = 3; translate([0, 0, 0]) difference () { union () { cylinder(r = void_d / 2, h = H, center = true); //skirt translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true); //notches translate([0, 0, -((H - 2.5) / 2) - .1]) { intersection () { cylinder(r = D2 / 2, h = 6, center = true); difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } intersection () { cylinder(r = D2 / 2, h = 6, center = true); rotate([0, 0, 90]) difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } } } translate([0, 0, -(H / 2) - 2]) { if (DEBUG) { cylinder(r = OD / 2, h = LEN + 8); } else { metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN + 8); } } translate([0, 0, 8.5]) { for (i = [0: RIDGES - 1]) { rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8.1, center = true); } } } } /** * Comment to preserve my sanity when developing: This single-spiral * insert is the same height as the s8 insert but has a different * diameter void fo the screw to prevent mismatching of spindle screws * designed for different purposes. **/ module gnal_spiral_bottom_insert_single () { $fn = 160; void_d = 18 - .6; H = 17; D2 = INSERT_D; translate([0, 0, 0]) difference () { union () { cylinder(r = void_d / 2, h = H, center = true); //skirt translate([0, 0, -(H - 1) / 2]) cylinder(r = D2 / 2, h = 1.5, center = true); //notches translate([0, 0, -((H - 2.5) / 2) - .1]) { intersection () { cylinder(r = D2 / 2, h = 6, center = true); difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } intersection () { cylinder(r = D2 / 2, h = 6, center = true); rotate([0, 0, 90]) difference () { rotate([0, 45, 0]) cube([3, D2 + 2, 3], center = true); translate([0, 0, -1.5]) cube([6, D2 + 3, 3], center = true); } } } } translate([0, 0, -LEN / 2]) { if (DEBUG) { cylinder(r = SINGLE_THREAD_D / 2, h = LEN); } else { metric_thread (diameter=SINGLE_THREAD_D, pitch=PITCH, thread_size = THREAD, length = LEN); } } } } /** * Spacers **/ module spacer_ridges () { ridges = 16; for (i = [0 : ridges]) { rotate([0, 0, i * (360 / ridges)]) translate([13.5, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60); } } module spacer_ridges_loose () { ridges = 16; intersection () { union () { for (i = [0 : ridges]) { rotate([0, 0, i * (360 / ridges)]) translate([13.7, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60); } } cylinder(r = 13.7, h = 12, center = true); } } module spacer_outer_ridges () { ridges = 24; H = 6.5; difference () { union () { for (i = [0 : ridges]) { rotate([0, 0, i * (360 / ridges)]) translate([14.6, 0, -4.75]) cylinder(r = 1.25, h = 8, $fn = 30); } } translate([0, 0, -4.1]) difference () { cylinder(r = 33 / 2, h = 4, center = true, $fn = 100); cylinder(r2 = 33 / 2, r1 = 27.75 / 2, h = 4.1, center = true, $fn = 100); } } } module gnal_spacer_solid () { core_d = 29.5; core_bottom_d = 26.2 + .2; void_d = 18; h = 8; RIDGES = 8; RIDGE_D = 3; translate([0, 0, 0]) difference () { union () { difference () { cylinder(r = core_d / 2, h = h, center = true, $fn = 200); } translate([0, 0, -.75]) rotate([0, 180, 0]) spacer_outer_ridges(); } } } /** * This spacer attaches to the top piece when it is used * for Super8 film. **/ module gnal_spacer () { add = 3.25; core_d = 29.5; core_bottom_d = 26.2 + .2; void_d = 22.5; h = 8 + add; translate([0, 0, (add / 2) - 1]) difference () { union () { difference () { cylinder(r = core_d / 2, h = h, center = true, $fn = 200); translate([0, 0, 8]) cylinder(r = core_bottom_d / 2, h = h, center = true, $fn = 200); cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200); } translate([0, 0, 0]) spacer_ridges_loose(); spacer_outer_ridges(); } //trim top translate([0, 0, h - 0.1]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200); //trim bottom translate([0, 0, -h + 0.9]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200); } } module gnal_spacer_16 () { core_d = 29.5; core_bottom_d = 26.2 + .2; void_d = 18.3; h = 8; RIDGES = 8; RIDGE_D = 3; difference () { gnal_spacer_solid(); cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200); } translate([0, 0, 0]) { for (i = [0: RIDGES - 1]) { rotate([0, 0, i * (360 / RIDGES)]) translate([void_d / 2, 0, 0]) cylinder(r = RIDGE_D / 2, h = 8, center = true); } } } /** * Spindles **/ module gnal_spindle_base ( ) { D = 8.45 * 2; H = 20; union() { translate([0, 0, -15]) { cylinder(r = D / 2, h = H, center = true, $fn = FINE); } } } module gnal_spindle_bottom_base ( HEX = false) { //for grip BUMP = 2; //diameter BUMPS = 6; TOP_D = 19; TOP_H = 9.5; TOP_OFFSET = -24.5; union() { gnal_spindle_base(); //hex version if (HEX) { translate([0, 0, TOP_OFFSET]) { cylinder(r = 11.1, h = TOP_H, center = true, $fn = 6); } } else { translate([0, 0, TOP_OFFSET]) { cylinder(r = TOP_D / 2, h = TOP_H, center = true, $fn = FINE); } } for (i = [0 : BUMPS]) { rotate([0, 0, (360 / BUMPS) * i]) { translate([0, 8.9, TOP_OFFSET]) { cylinder(r = BUMP, h = TOP_H, center = true, $fn = 60); } } } } } module outer_screw (LEN) { OD = 10; PITCH = 1.5; THREAD = 1.6; difference () { translate([0, 0, -7.1]) { if (DEBUG) { cylinder(r = OD / 2, h = LEN); } else { metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN); } } //bevel top of screw translate([0, 0, LEN - 8]) difference() { cylinder(r = 8, h = 3, center = true, $fn = FINE); cylinder(r1 = 6, r2 = 3, h = 3.01, center = true, $fn = FINE); } } } module gnal_spindle_bottom (ALT = false, HEX = false) { OD = 13.6 + .5; PITCH = 1.5; THREAD = 1.6; IN_LEN = 21; LEN = 17.1; ALT_LEN = 27.1; difference () { gnal_spindle_bottom_base(HEX); //inner screw negative translate([0, 0, -30]) union() { if (DEBUG) { cylinder(r = OD / 2, h = IN_LEN); } else { metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN); } translate([0, 0, 0.2]) { if (DEBUG) { cylinder(r = OD / 2, h = IN_LEN); } else { metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN); } } } } difference () { //outer screw if (ALT) { outer_screw(ALT_LEN); } else { outer_screw(LEN); } } } module number_one () { rotate([0, 45, 0]) cube([1, 6, 1], center = true); translate([0, 6 / 2, 0]) rotate([45, 0, 0]) cube([2, 1, 1], center = true); translate([0, -6 / 2, 0]) rotate([45, 0, 0]) cube([2, 1, 1], center = true); } module gnal_spindle_top () { D = 50; THICKNESS = 2.5; H = 19.5; ROUND = 8; HANDLE_D = 13.25; HANDLE_BASE = 16; HANDLE_TOP = 13; HANDLE_H = 54.5; NOTCHES = 17; NOTCH = 1.5; FINE = 200; difference () { //cup translate([0, 0, ROUND - 2]) minkowski () { cylinder(r = (D / 2) - ROUND, h = (H * 2) - ROUND, center = true, $fn = FINE); sphere(r = ROUND, $fn = FINE); } translate([0, 0, ROUND - 2 + THICKNESS]) minkowski () { cylinder(r = (D / 2) - THICKNESS - ROUND, h = (H * 2) - ROUND, center = true, $fn = 200); sphere(r = ROUND, $fn = FINE); } //hollow out cup translate([0, 0, H + ROUND - 4 - 3]) { cylinder(r = (D / 2) + 1, h = H * 2, center = true); } //inner cup bevel translate([0, 0, (H / 2) - ROUND - 1]) { cylinder(r1 = (D / 2) - 2.5, r2 = (D / 2) - 2.5 + 1, h = 1, center = true, $fn = FINE); } //outer cup bevel translate([0, 0, (H / 2) - ROUND - 1]) { difference () { cylinder(r = (D / 2) + .25, h = 1, center = true, $fn = FINE); cylinder(r2 = (D / 2) - .8, r1 = (D / 2) - .8 + 1, h = 1, center = true, $fn = FINE); } } //hole in cup translate([21, 0, -10]) cylinder(r = 3 / 2, h = 40, center = true, $fn = 40); } //reference cylinder //translate([0, 0, -6.6]) color("red") cylinder(r = 50 / 2, h = 19.57, center = true); //handle translate([0, 0, -15]) { difference() { cylinder(r1 = HANDLE_BASE / 2, r2 = HANDLE_TOP / 2, h = HANDLE_H, $fn = FINE); //text translate([3 / 2, 0, 15 + 39.75]) number_one(); translate([-3 / 2, 0, 15 + 39.75]) number_one(); //ring negative translate([0, 0, 31 + 14.5]) { difference () { cylinder(r = HANDLE_D / 2 + 2, h = 20, center = true); cylinder(r = HANDLE_D / 2 - .5, h = 20 + 1, center = true); } } //handle notches for(i = [0 : NOTCHES]) { rotate([0, 0, i * (360 / NOTCHES)]) { translate([0, HANDLE_D / 2 - .5, 31 + 14.5]) { rotate([0.75, 0, 0]) rotate([0, 0, 45]) { Right_Angled_Triangle(a = NOTCH, b = NOTCH, height = 20, centerXYZ=[true, true, true]); } } } } //bevel handle at top translate([0, 0, 54.01]) { difference () { cylinder(r = 13 / 2, h = 1, center = true); cylinder(r1 = 12.5 / 2, r2 = 11.5 / 2, h = 1.01, center = true); } } } } //attach handle with pyramid cylinder translate ([0, 0, -13.7]) { cylinder(r1 = 16 / 2 + 2, r2 = 16 / 2 - .1, h = 3, center = true, $fn = FINE); } //plate under cup translate([0, 0, -17.75]) { cylinder(r = 31.5 / 2, h = 1, center = true, $fn = FINE); } //screw translate([0, 0, -37.5]) { if (DEBUG) { cylinder(r = 13.6 / 2, h = 21); } else { metric_thread (diameter=13.6, pitch = PITCH, thread_size = THREAD, length = 21); } } //cylinder plug translate([0, 0, -37.5 + (21 / 2) - 1]) { cylinder(r = 12 / 2, h = 21, center = true, $fn = FINE); } } module gnal_spindle_single () { D = 50; THICKNESS = 2.5; H = 19.5; ROUND = 8; HANDLE_D = 13.25; HANDLE_BASE = 16; HANDLE_TOP = 13; HANDLE_H = 54.5; NOTCHES = 17; NOTCH = 1.5; FINE = 200; SINGLE_INSERT = 11; difference () { //cup translate([0, 0, ROUND - 2]) minkowski () { cylinder(r = (D / 2) - ROUND, h = (H * 2) - ROUND, center = true, $fn = FINE); sphere(r = ROUND, $fn = FINE); } translate([0, 0, ROUND - 2 + THICKNESS]) minkowski () { cylinder(r = (D / 2) - THICKNESS - ROUND, h = (H * 2) - ROUND, center = true, $fn = 200); sphere(r = ROUND, $fn = FINE); } //hollow out cup translate([0, 0, H + ROUND - 4 - 3]) { cylinder(r = (D / 2) + 1, h = H * 2, center = true); } //inner cup bevel translate([0, 0, (H / 2) - ROUND - 1]) { cylinder(r1 = (D / 2) - 2.5, r2 = (D / 2) - 2.5 + 1, h = 1, center = true, $fn = FINE); } //outer cup bevel translate([0, 0, (H / 2) - ROUND - 1]) { difference () { cylinder(r = (D / 2) + .25, h = 1, center = true, $fn = FINE); cylinder(r2 = (D / 2) - .8, r1 = (D / 2) - .8 + 1, h = 1, center = true, $fn = FINE); } } //hole in cup translate([21, 0, -10]) cylinder(r = 3 / 2, h = 40, center = true, $fn = 40); } //reference cylinder //translate([0, 0, -6.6]) color("red") cylinder(r = 50 / 2, h = 19.57, center = true); //handle translate([0, 0, -15]) { difference() { cylinder(r1 = HANDLE_BASE / 2, r2 = HANDLE_TOP / 2, h = HANDLE_H, $fn = FINE); //text translate([0, 0, 15 + 39.75]) number_one(); //ring negative translate([0, 0, 31 + 14.5]) { difference () { cylinder(r = HANDLE_D / 2 + 2, h = 20, center = true); cylinder(r = HANDLE_D / 2 - .5, h = 20 + 1, center = true); } } //handle notches for(i = [0 : NOTCHES]) { rotate([0, 0, i * (360 / NOTCHES)]) { translate([0, HANDLE_D / 2 - .5, 31 + 14.5]) { rotate([0.75, 0, 0]) rotate([0, 0, 45]) { Right_Angled_Triangle(a = NOTCH, b = NOTCH, height = 20, centerXYZ=[true, true, true]); } } } } //bevel handle at top translate([0, 0, 54.01]) { difference () { cylinder(r = 13 / 2, h = 1, center = true); cylinder(r1 = 12.5 / 2, r2 = 11.5 / 2, h = 1.01, center = true); } } } } //attach handle with pyramid cylinder translate ([0, 0, -13.7]) { cylinder(r1 = 16 / 2 + 2, r2 = 16 / 2 - .1, h = 3, center = true, $fn = FINE); } //plate under cup translate([0, 0, -17.75]) { cylinder(r = 31.5 / 2, h = 1, center = true, $fn = FINE); } //insert for single layer translate ([0, 0, -24.25]) { cylinder(r = 22 / 2, h = 14, center = true, $fn = FINE); } //screw translate([0, 0, -37.5 - SINGLE_INSERT]) { if (DEBUG) { cylinder(r = SINGLE_THREAD_D / 2, h = 21); } else { metric_thread (diameter=SINGLE_THREAD_D, pitch = PITCH, thread_size = THREAD, length = 21); } } //cylinder plug translate([0, 0, -37.5 - SINGLE_INSERT + (21 / 2) - 1]) { cylinder(r = 10 / 2, h = 21, center = true, $fn = FINE); } } module gnal_stacking_spindle () { OD = 10.5 + .3; IN_LEN = 21; LEN = 17.1; ALT_LEN = 27.1; difference () { union () { gnal_spindle_base(); translate([0, 0, -23.75]) gnal_spacer_solid(); } //inner screw negative translate([0, 0, -30]) union() { if (DEBUG) { cylinder(r = OD / 2, h = IN_LEN); } else { metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN); } translate([0, 0, 0.2]) { if (DEBUG) { cylinder(r = OD / 2, h = IN_LEN); } else { metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length = IN_LEN); } } } } difference () { outer_screw(LEN - 2); } }