include <../libraries/threads.scad>;
//https://www.thingiverse.com/thing:186660
include <../libraries/path_extrude.scad>;

$fn = 20;

H = 9.71;

REEL_H = 42;
REEL_D = 225.67 + .4;
REEL_OUTER_WALL_H = 7.5;
REEL_OUTER_WALL_W = 5.9;


REEL_INNER_D = 50;
REEL_INNER_H = 7.5;
REEL_INNER_WALL_W = 20;

REEL_MIDDLE_D = ((REEL_D - REEL_INNER_D) / 2) + REEL_INNER_D;
REEL_MIDDLE_WALL_H = 7.5;
REEL_MIDDLE_WALL_W = 3;

SPOKE_COUNT = 24;

OD = 10;
PITCH = 1.5;
THREAD = 1.6;
LEN = 21;

/** 
 * Frame which the bottom of the spiral reel is mounted to.
 */
module reel_frame () {
  //outer wall
  difference () {
      cylinder(r = REEL_D / 2, h = REEL_OUTER_WALL_H, center = true);
      cylinder(r = (REEL_D / 2) - REEL_OUTER_WALL_W, h = REEL_OUTER_WALL_H + 1, center = true);
  }

  difference () {
      cylinder(r = REEL_MIDDLE_D / 2, h = REEL_MIDDLE_WALL_H, center = true);
      cylinder(r = (REEL_MIDDLE_D / 2) - REEL_MIDDLE_WALL_W, h = REEL_MIDDLE_WALL_H + 1, center = true);
  }

  //inner wall
  difference () {
      cylinder(r = REEL_INNER_D / 2, h = REEL_INNER_H, center = true);
      cylinder(r = (REEL_INNER_D / 2) - REEL_INNER_WALL_W, h = REEL_INNER_H + 1, center = true);
  }

  //standoff
  B = 8.15;
  D = 10.63;

  OUTER = ((D * 2) + B) / 2;
  INNER = B / 2;

  translate ([0, 0, 4]) {
    difference () {
      cylinder(r = OUTER, h = 8, center = true);
      cylinder(r = INNER, h = 8 + 1, center = true);
      translate([0, 0, -8]) metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN);
    }
    translate([0, 13, 0]) rotate([0, 0, 45]) cube([8, 8, 8], center = true);
  }

  //spokes
  spokes();
  rotate([0, 0, 360 / (SPOKE_COUNT * 2)]) {
    difference() {
      spokes();
      cylinder(r = REEL_MIDDLE_D / 2, h = REEL_MIDDLE_WALL_H + 1, center = true);
    }
  }
}

/** 
 * Spokes structure for the spiral reel frame
 */
module spokes () {
    for (i = [0 : SPOKE_COUNT]) {
      rotate([0, 0, i * (360 / SPOKE_COUNT)]) {
          translate([0, (REEL_INNER_D / 2) + ((REEL_D - REEL_INNER_D) / 4) - 1, 0]) {
              cube([3, (REEL_D - REEL_INNER_D) / 2, REEL_OUTER_WALL_H], center = true);
          }
      }
    }
}

/** 
 * The bottom spiral
 */
module spiral_bottom_old () {
    union () {
        difference () {
            translate([0, 0, (-(H - REEL_OUTER_WALL_H) / 2) - .05]) reel_frame();
        }
        rotate([0, 0, 270]) scale([-1, 1, 1]) spiral();
    }
}
/**
 * Only needed for 50ft model, not the current target ATM.
 */
module spiral_top_old () {
    union () {
        difference () {
            translate([0, 0, (-(H - REEL_OUTER_WALL_H) / 2) - .05]) reel_frame();
        }
        rotate([0, 0, 270]) scale([-1, 1, 1]) spiral();
    }
}


/**
 * Render all spiral facets for as many rotations as supplied
    Using new module
 */
module spiral (START_D = 50, SPIRALS = 39) {
    //STOP_D = 100;
  
    SPACING = 0.86;//1.34;
  
  	TOP_T = 0.86; //thickness
  	BOTTOM_T = 1.4;
  
  	START_R = START_D / 2;
    union () {
        for (i = [0 : $fn]) {
            rotate ([0, 0, i * (360 / $fn)]) {
                for (x = [0: (SPIRALS - 1)]) {
                      spiral_facet(i, x, START_R, SPACING, BOTTOM_T, TOP_T, H);
                }
            }
        }
    }
}

/**
 * Generates a single face of the spiral, in this case a trapazoidal
 * shape. Issues are (1) performance (maybe use of hull()) and (2) all
 * facet lenths are the same, despite the diameter. This means that
 * there are excessive numbers of facets for the smaller spirals to
 * compensate for the number of facets needed for the outer spiral.
 */

module spiral_facet (i, x, START_R, SPACING, BOTTOM_T, TOP_T, H) {
    STEP_SIZE = ((SPACING + BOTTOM_T) / $fn); 
    
    STEP_OFFSET =  i * STEP_SIZE;
    SPIRAL_START_OFFSET = (x * (SPACING + BOTTOM_T));
    
    ACTUAL_R = START_R + SPIRAL_START_OFFSET + STEP_OFFSET;
    
	L = 2 * (ACTUAL_R * tan((360 / $fn) / 2));
    
    ANGLE = -atan( STEP_SIZE / (L / 2) ) / 2;
    
    OFFSET = START_R - (BOTTOM_T / 2) + SPIRAL_START_OFFSET + STEP_OFFSET;
    
    translate ([OFFSET, 0, - H / 2]) {
        rotate ([0, 0, ANGLE]) {
            //replace hull for quick render?
            //test spiral lib
            hull () {
                translate([0, 0, H]) 
                    cube([TOP_T, L, 0.1], center=true);
                    cube([BOTTOM_T, L, 0.1], center=true);   
            }
        }
    }
}

/**
 * Generates an arc with a diameter, width, height and total angle.
 */
module arc (D, W, H, ANGLE) {
   R = D / 2;
   difference () {
        cylinder(r = R, h = H, center = true);
        cylinder(r = R - W, h = H + 1, center = true);
        if (ANGLE <= 90) {
            translate([-R, -R, 0]) cube([D, D, H + 1], center=true);
            translate([-R, R, 0]) cube([D, D, H + 1], center=true);
            translate([R, -R, 0]) cube([D, D, H + 1], center=true);
            rotate ([0, 0, ANGLE]) {
                translate([R, R, 0]) {
                    cube([D, D, H + 1], center=true);
                }
            }
        } else if (ANGLE <= 180) {
            translate([-R, -R, 0]) cube([D, D, H + 1], center=true);
            translate([R, -R, 0]) cube([D, D, H + 1], center=true);
            rotate ([0, 0, ANGLE]) {
                translate([R, R, 0]) {
                    cube([D, D, H + 1], center=true);
                }
            }
        } else if (ANGLE <= 270) {
            translate([R, -R, 0]) cube([D, D, H + 1], center=true);
            rotate ([0, 0, ANGLE]) {
                translate([R, R, 0]) {
                    cube([D, D, H + 1], center=true);
                }
            }
        } else if (ANGLE <= 360) {
            difference () {
                union () {
                    difference () {
                        cylinder(r = R + 1, h = H + 1, center = true);
                        cylinder(r = R - W - 1, h = H + 2, center = true);
                    }
                }
                scale ([1, -1, 1]) {
                    translate([-R, -R, 0]) cube([D, D, H + 1], center=true);
                    translate([-R, R, 0]) cube([D, D, H + 1], center=true);
                    translate([R, -R, 0]) cube([D, D, H + 1], center=true);
                    rotate ([0, 0, 360 - ANGLE]) {
                        translate([R, R, 0]) {
                            cube([D, D, H + 1], center=true);
                        }
                    }
                }
            }
        }
    }
}

module film () {
    //sample film
     arc(REEL_D - 4, .5, 16, 100);
}

module spiral_top_old_debug (half = false, top = false) {
    difference () {
        translate([0, 0, 37]) rotate([180, 0, 180]) spiral_top_old();
        if (half) {
            rotate([0, 0, 80]) translate([50, 0, 0]) cube([100, 100, 100], center = true); //half
        }
        if (top) {
            translate([0, 0, 60]) cube([100, 100, 100], center = true); //just top
        }
    }
}

module spiral_bottom_old_debug () {
    difference () {
        spiral_bottom_old();
        rotate([0, 0, 80]) translate([50, 0, 0]) cube([100, 100, 100], center = true);
    }
}

module exploded_view () {
    spiral_bottom_old();
    translate([0, 0, 37 + 15]) rotate([180, 0, 180]) spiral_top_old();
    translate([0, 0, -10]) spiral_top_old_cap();
}

module spiral_test () {
    //$fn = 100;
    //spiral(START_D=34,SPIRALS=8);
    translate([0, 0, (-(H - REEL_OUTER_WALL_H) / 2) - .05]) {
        //difference () {
            intersection() {
                reel_frame();
                cylinder(r = 35, h = H + 20, center = true);
            }
            //cylinder(r = 22, h = H, center = true);
        //}
    }
}

module spiral_bottom_core (thread = false) {
    $fn = 360;
    
    core_center_h = 3;
    
    core_bottom_outer_d = 53;
    core_bottom_outer_void_d = 44;
    core_bottom_outer_h = 4.2;
    
    core_d = 29.5;
    core_h = 8.5;
    
    core_bottom_d = 26;
    core_bottom_h = 5;
    
    top_z_offset = (core_h / 2) - (core_center_h / 2);
    
    arms_outer_d = 48;
    arms_inner_d = 48 - 7;
    
    core_void_outer_d = 20.5;
    core_void_inner_d = 14.5;
    core_void_h = 11.5;
    
    film_void = 0.8;
    
    translate([0, 0, -(core_bottom_outer_h / 2) - (core_center_h / 2) ]) difference () {
        cylinder(r = core_bottom_outer_d / 2, h = core_bottom_outer_h + core_center_h, center = true);
        cylinder(r = core_bottom_outer_void_d / 2, h = core_bottom_outer_h + core_center_h + 1, center = true);
    }
    difference () {
        union() {
            //center
            translate([0, 0, -core_center_h / 2]) {
                difference () {
                  cylinder(r = (core_bottom_outer_d - 1) / 2, h = core_center_h, center = true);
                  rotate([0, 0, -120]) translate([20, 0, 0]) rotate([0, 0, 45]) cube([20, 20, 20], center = true);
                }
                translate([0, 0, -1]) cylinder(r = core_d / 2, h = core_center_h, center = true);
            }
            //top
            translate([0, 0, top_z_offset]) {
                cylinder(r = core_d / 2, h = core_h + core_center_h, center = true); 
            }
            //bottom
            translate([0, 0, -(core_bottom_h / 2) - (core_center_h / 2)]) {
                cylinder(r = core_bottom_d / 2, h = core_bottom_h + core_center_h, center = true); 
            }
        }
        //thread
        if (thread) {
            translate([0, 0, -LEN / 2]) metric_thread (diameter=OD + .2, pitch=PITCH, thread_size = THREAD, length=LEN);
        } else {
            cylinder(r = (OD + 0.2) / 2, h = LEN, center = true);
        }
        translate([0, 0, -2.3]) difference () {
            cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true);
            cylinder(r = core_void_inner_d / 2, h = core_void_h + 1, center = true);
        }
    }

    //arms
    difference () {
        union () {
            translate([0, 0, top_z_offset]) difference() {
                //adjust one arm inward
                intersection () {
                    cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
                    translate([1, 0, 0]) cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
                }
                intersection () {
                    cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
                    translate([1, 0, 0]) cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
                }
                translate([0, arms_outer_d / 2, 0]) cube([arms_outer_d, arms_outer_d, arms_outer_d], center = true);
            }
            
            translate([(arms_outer_d + arms_inner_d) / 4, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
            //adjusted arm
            translate([-((arms_outer_d + arms_inner_d) / 4)  + 1, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
            
            difference () {
                rotate([0, 0, -120]) translate([13.75, 0, top_z_offset]) cube([16, 20, core_h + core_center_h], center = true);
                //remove piece from adjusting arm
                translate([-19, -14, 0]) rotate([0, 0, 10]) cube([4, 4, 30], center = true);
                rotate([0, 0, -120 - 37]) translate([18, 0, top_z_offset]) {
                    cylinder(r = 6.8 / 2, h = 30, center = true);
                    translate([-4, -2, 0]) cube([4, 4, 30], center = true);
                }
                rotate([0, 0, -120 + 37]) translate([18, 0, top_z_offset]) {
                    cylinder(r = 6.8 / 2, h = 30, center = true);
                    translate([-4, 2, 0])  cube([4, 4, 30], center = true);
                }
            }
        }
        rotate([0, 0, -120]) translate([20, -5, 0]) rotate([0, 0, 45]) cube([20, film_void, 30], center = true);
        rotate([0, 0, -120]) translate([20, 5, 0]) rotate([0, 0, -45]) cube([20, film_void, 30], center = true);
        rotate([0, 0, -120]) translate([25, 0, 0]) difference () {
            cylinder(r = 8 / 2, h = 30, center = true);
            translate([-6.9, 0, 0]) cube([8, 8, 30], center = true);
        }
        cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true);
        rotate([0, 0, -120]) translate([20, 0, -1.5]) rotate([0, 0, 45]) cube([20, 20, 3.01], center = true);
    }
}

module spiral_bottom (threads = false, spiral_count = 40) {
    outer_d = 215;
    outer_d_inside = 209;
    outer_h = 7.5;
    
    spoke_len = 81;
    spoke_w = 3;
    spoke_h = 4.2 + 3;
    
    spoke_2_len = 43;
    spoke_2_h = 6;
    
    translate([0, 0, -3.75]) difference () {
        cylinder(r = outer_d / 2, h = outer_h, center = true, $fn = 500);
        cylinder(r = outer_d_inside / 2, h = outer_h + 1, center = true, $fn = 500);
    }
    
    //rounding voids
    difference () {
        spiral_bottom_core(threads);
        for (i = [0 : SPOKE_COUNT]) {
            rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([0, 26.75, 0]) cylinder(r = 2, h = 20, center = true, $fn = 40);
        }
    }
    
    for (i = [0 : SPOKE_COUNT]) {
        rotate([0, 0, i * (360 / SPOKE_COUNT)]) translate([(spoke_len / 2) + (48 / 2), 0, -3.6]) cube([spoke_len, spoke_w, spoke_h], center = true);
    }
    
    for (i = [0 : SPOKE_COUNT]) {
        rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([(outer_d / 2) - (spoke_2_len / 2) - 2, 0, -3]) cube([spoke_2_len, spoke_w, spoke_2_h], center = true);
    }
    
    for (i = [0 : SPOKE_COUNT]) {
        rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([63, 0, -3]) rotate([0, 0, 20]) cube([ spoke_w, 18, spoke_2_h], center = true);
    }

    //translate([0, 0, 1]) rotate([0, 0, 0]) spiral_2 (START_D = 46.95, SPIRALS = spirals); //12 //40
    translate([0, 0, -.1]) spirals(spiral_count, 46.95 - 1.2, 2.075);
}

module spiral_top_core () {
    $fn = 360;
    
    core_center_h = 3;
    
    core_bottom_outer_d = 53;
    core_bottom_outer_void_d = 44;
    core_bottom_outer_h = 4.2;
    
    core_d = 29.5;
    core_h = 8.5;
    
    core_bottom_d = 26;
    core_bottom_h = 4.2;
    
    top_z_offset = (core_h / 2) - (core_center_h / 2);
    
    core_void_outer_d = 20.5;
    core_void_inner_d = 14.5;
    core_void_h = 11.5;
    
    arms_outer_d = 48;
    arms_inner_d = 48 - 7;
    
    void_d = 18;
    
    film_void = 0.8;
    
    translate([0, 0, -(core_bottom_outer_h / 2) - (core_center_h / 2) ]) difference () {
        cylinder(r = core_bottom_outer_d / 2, h = core_bottom_outer_h + core_center_h, center = true);
        cylinder(r = core_bottom_outer_void_d / 2, h = core_bottom_outer_h + core_center_h + 1, center = true);
    }
    difference () {
        union() {
            //center
            translate([0, 0, -core_center_h / 2]) {
                difference () {
                  cylinder(r = (core_bottom_outer_d - 1) / 2, h = core_center_h, center = true);
                  rotate([0, 0, -120]) translate([20, 0, 0]) rotate([0, 0, 45]) cube([20, 20, 20], center = true);
                }
                translate([0, 0, -1]) cylinder(r = core_d / 2, h = core_center_h, center = true);
            }
            //top
            translate([0, 0, top_z_offset]) {
                cylinder(r = core_d / 2, h = core_h + core_center_h, center = true); 
            }
            //bottom
            translate([0, 0, -(core_bottom_h / 2) - (core_center_h / 2)]) {
                cylinder(r = core_bottom_d / 2, h = core_bottom_h + core_center_h, center = true); 
            }
        }
        cylinder(r = void_d / 2, h = 30, center = true);
        translate([0, 0, -12]) spacer_ridges();
    }

    //arms
    difference () {
        union () {
            translate([0, 0, top_z_offset]) difference() {
                //adjust the shorter arm
                intersection () {
                    cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
                    translate([1, 0, 0]) cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true);
                }
                intersection () {
                    cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
                    translate([1, 0, 0]) cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true);
                }
                translate([0, arms_outer_d / 2, 0]) cube([arms_outer_d, arms_outer_d, arms_outer_d], center = true);
            }
            
            translate([(arms_outer_d + arms_inner_d) / 4, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
            //adjusted arm
            translate([-((arms_outer_d + arms_inner_d) / 4)  + 1, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40);
            
            difference () {
                rotate([0, 0, -120]) translate([13.75, 0, top_z_offset]) cube([16, 20, core_h + core_center_h], center = true);
                //remove piece from adjusting arm
                translate([-19, -14, 0]) rotate([0, 0, 10]) cube([4, 4, 30], center = true);
                rotate([0, 0, -120 - 37]) translate([18, 0, top_z_offset]) {
                    cylinder(r = 6.8 / 2, h = 30, center = true);
                    translate([-4, -2, 0]) cube([4, 4, 30], center = true);
                }
                rotate([0, 0, -120 + 37]) translate([18, 0, top_z_offset]) {
                    cylinder(r = 6.8 / 2, h = 30, center = true);
                    translate([-4, 2, 0]) cube([4, 4, 30], center = true);
                }
            }
        }
        rotate([0, 0, -120]) translate([20, -5, 0]) rotate([0, 0, 45]) cube([20, film_void, 30], center = true);
        rotate([0, 0, -120]) translate([20, 5, 0]) rotate([0, 0, -45]) cube([20, film_void, 30], center = true);
        rotate([0, 0, -120]) translate([25, 0, 0]) difference () {
            cylinder(r = 8 / 2, h = 30, center = true);
            translate([-6.9, 0, 0]) cube([8, 8, 30], center = true);
        }
        cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true);
        rotate([0, 0, -120]) translate([20, 0, -1.5]) rotate([0, 0, 45]) cube([20, 20, 3.01], center = true);
        cylinder(r = void_d / 2, h = 30, center = true);
    }
}

module spiral_top (spiral_count = 40) {
    outer_d = 215;
    outer_d_inside = 209;
    outer_h = 7.5;
    
    spoke_len = 81;
    spoke_w = 3;
    spoke_h = 4.2 + 3;
    
    spoke_2_len = 43;
    spoke_2_h = 6;
    
    translate([0, 0, -3.75]) difference () {
        cylinder(r = outer_d / 2, h = outer_h, center = true, $fn = 500);
        cylinder(r = outer_d_inside / 2, h = outer_h + 1, center = true, $fn = 500);
    }
    
    difference () {
        spiral_top_core();
        for (i = [0 : SPOKE_COUNT]) {
            rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([0, 26.75, 0]) cylinder(r = 2, h = 20, center = true, $fn = 40);
        }
    }
    
    for (i = [0 : SPOKE_COUNT]) {
        rotate([0, 0, i * (360 / SPOKE_COUNT)]) translate([(spoke_len / 2) + (48 / 2), 0, -3.6]) cube([spoke_len, spoke_w, spoke_h], center = true);
    }
    
    for (i = [0 : SPOKE_COUNT]) {
        rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([(outer_d / 2) - (spoke_2_len / 2) - 2, 0, -3]) cube([spoke_2_len, spoke_w, spoke_2_h], center = true);
    }
    
    for (i = [0 : SPOKE_COUNT]) {
        rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([63, 0, -3]) rotate([0, 0, 20]) cube([ spoke_w, 18, spoke_2_h], center = true);
    }
    
    //translate([0, 0, 1]) rotate([0, 0, 0]) spiral_2 (START_D = 46.95, SPIRALS = spiral_count);//12 //40
    translate([0, 0, -.1]) spirals(spiral_count, 46.95 - 1.2, 2.075);
}

module spacer_ridges () {
    ridges = 16;
    for (i = [0 : ridges]) {
        rotate([0, 0, i * (360 / ridges)]) translate([13.5, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60);
    }
}

module spacer_ridges_loose () {
    ridges = 16;
    intersection () {
        union () {
            for (i = [0 : ridges]) {
                rotate([0, 0, i * (360 / ridges)]) translate([13.7, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60);
            }
        }
        cylinder(r = 13.7, h = 12, center = true);
    }
}
module spacer_outer_ridges () {
    ridges = 24;
    H = 6.5;
    difference () {
        union () {
            for (i = [0 : ridges]) {
                rotate([0, 0, i * (360 / ridges)]) translate([14.6, 0, -4.75]) cylinder(r = 1.25, h = 8, $fn = 30);
            }
        }
        translate([0, 0, -4.1]) difference () {
            cylinder(r = 33 / 2, h = 4, center = true, $fn = 100);
            cylinder(r2 = 33 / 2, r1 = 27.75 / 2, h = 4.1, center = true, $fn = 100);
        }
    }
}
module spacer () {
    add = 3.25;
    core_d = 29.5;
    core_bottom_d = 26.2 + .2;
    void_d = 22.5;
    h = 8 + add;
    translate([0, 0, (add / 2) - 1]) difference () {
        union () {
            difference () {
                cylinder(r = core_d / 2, h = h, center = true, $fn = 200);
                translate([0, 0, 8]) cylinder(r = core_bottom_d / 2, h = h, center = true, $fn = 200);
                cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200);
            }
            translate([0, 0, 0]) spacer_ridges_loose();
            spacer_outer_ridges();
        }
        //trim top
        translate([0, 0, h - 0.1]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200);
        //trim bottom
        translate([0, 0, -h + 0.9]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200);
        //finger grips
        //translate([0, 24, 0]) rotate([-6, 0, 0]) cylinder(r = 10, h = 6, center = true, $fn = 100);
        //translate([0, -24, 0]) rotate([6, 0, 0]) cylinder(r = 10, h = 6, center = true, $fn = 100);
    }
}

module top () {
    H = 5;
    center_d = 53;
    spoke_w = 4.5;
    spokes = 12;
    outer_d = 215;
    inner_d = 150;
    void_d = 22.5;
    hole_d = 3.5;
    hole_spacing = 37;
    core_d = 29.5;
    core_bottom_d = 26.2;
    
    difference () {
        union () {
            cylinder(r = center_d / 2, h = H, center = true, $fn = 100);
            for (i = [0 : spokes]) {
                rotate([0, 0, i * (360 / spokes)]) translate([0, outer_d / 4, 0]) cube([spoke_w, (outer_d / 2) - 1, H], center = true);
            }
        }
        //void
        cylinder(r = void_d / 2, h = H + 1, center = true, $fn = 100);
        //speed holes
        for (i = [0 : 3]) {
            rotate([0, 0, (i * 90) + 45]) translate([0, hole_spacing / 2, 0]) cylinder(r = hole_d / 2, h = H + 1, center = true);
        }
        //rounding of center cylinder
        for (i = [0 : spokes]) {
            rotate([0, 0, (i + 0.5) * (360 / spokes)]) translate([-2.75, 26.5, 0]) cylinder(r = 2, h = H+1, center = true, $fn = 40);
            rotate([0, 0, (i + 0.5) * (360 / spokes)]) translate([2.75, 26.5, 0]) cylinder(r = 2, h = H+1, center = true, $fn = 40);
             rotate([0, 0, (i + 0.5) * (360 / spokes)]) translate([0, 26.5, 0]) cube([5, 4, H + 1], center = true);
        }
    }
    difference () {
        cylinder(r = (center_d / 2) - 1.8, h = H, center = true, $fn = 200);
        cylinder(r = (hole_spacing / 2) + 2, h = H + 1, center = true, $fn = 200);
    }
    //outer ring
    difference () {
        cylinder(r = outer_d / 2, h = H, center = true, $fn = 200);
        cylinder(r = (outer_d / 2) - 5, h = H + 1, center = true, $fn = 200);
    }
    //inner ring
    difference () {
        cylinder(r = inner_d / 2, h = H, center = true, $fn = 200);
        cylinder(r = (inner_d / 2) - 5, h = H + 1, center = true, $fn = 200);
    }
    //rounded cross connectors
    for (i = [0 : spokes]) {
                rotate([0, 0, i * (360 / spokes)]) translate([0, (inner_d / 2) - (spoke_w / 2), 0]) difference() {
                    cylinder(r = 6.5, h = H, center = true);
                    translate([6.25, 6, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60);
                    translate([-6.25, 6, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60);
                    translate([-6.1, -7, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60);
                    translate([6.1, -7, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60);
                }
            }
            difference () {
                union () {
                    translate([0, 0, 3.75 + 1]) cylinder(r = core_d / 2, h = H, center = true, $fn = 60);
                    translate([0, 0, 3.75 + 1 + 3.2]) cylinder(r = core_bottom_d / 2, h = H, center = true, $fn = 60);
                }
                cylinder(r = void_d / 2, h = H * 5 , center = true, $fn = 100);
                translate([0, 0, 4 + 1 + 2.25]) spacer_ridges();
            }
    //rounded outer ring connectors
    for (i = [0 : spokes]) {
            rotate([0, 0, i * (360 / spokes)]) translate([0, 205 / 2, 0]) difference () {
                cube([13, 9, H], center = true);
                translate([6.2, -4.2, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60);
                translate([-6.2, -4.2, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60);
            }
        }        
}

module spiral_facet_2 (i, SPIRAL, START_R = 48, SPACING = 2, FACET_SIZE = 1, FN = 360) {

    BOTTOM_T = 1.2;
    TOP_T = .3;
    H = 2.1;
    
    STEP_SIZE = SPACING / FN; 
    STEP_OFFSET =  (SPIRAL * SPACING) + (i * STEP_SIZE);
    
    ROT = i* (360 / FN);
    ANGLE = 0;
    
    OFFSET = START_R + STEP_OFFSET;
    
    rotate([0, 0, ROT]) translate ([OFFSET, 0, - H / 2]) {
        rotate ([0, 0, ANGLE]) {
            hull () {
                translate([0, 0, H]) 
                    cube([TOP_T, FACET_SIZE, 0.1], center=true);
                    cube([BOTTOM_T, FACET_SIZE, 0.1], center=true);   
            }
        }
    }
}

module spiral_2 (SPIRALS = 40, START_D = 48) {
    SPACING = 2.075;
    FACET_SIZE = 2;
    for (SPIRAL = [0 : SPIRALS - 1]) {
        //C = PI * R^2
        C = PI * pow(( (START_D / 2) + (SPIRAL * SPACING) ) / 2, 2);
        FN = ceil( C / FACET_SIZE );
        for (i = [0 : FN - 1]) {
            spiral_facet_2(i, SPIRAL, START_D / 2, SPACING, FACET_SIZE, FN);
        }
    }
}

module spirals (count = 40, start_d = 48, spacing = 2) {
    facet_size = 30;
    bottom = 1.2;
    top = .3;
    top_offset = (bottom - top);
    h = 2.2;
    
    od = start_d + (spacing * 2 * count);
    echo("SPIRAL LENGTH", PI * count * (od + start_d + 1) / 2);
    echo("OUTER D", od);
    
    facetProfile = [[0, 0], [top_offset, -h], [bottom, -h], [bottom, 0]];
    union () {
        for (s = [0 : count - 1]) {
            d = start_d + (s * spacing * 2);
            c = PI * pow(d / 2, 2);
            $fn = ceil( c / facet_size );
            angle_i = 360 / $fn;
            increment = spacing / $fn;
            spiralPath = [ for(t = [0 : $fn + 1]) [((d / 2) + (t * increment)) * cos(t * angle_i), ((d / 2) + (t * increment)) * sin(t * angle_i), 0] ];
            path_extrude(exShape=facetProfile, exPath=spiralPath);
        }
    }
}

module spirals_compressed (count = 40, start_d = 48, spacing = 2 ) {
    facet_size = 30;
    bottom = 1.2;
    top = .3;
    top_offset = (bottom - top);
    h = 2.2;
    
    facetProfile = [[0, 0], [top_offset, -h], [bottom, -h], [bottom, 0]];
    
    spiralPath = [ for (s = [0 : count - 1]) for(t = [0 : ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size ) - 1]) [(((start_d + (s * spacing * 2)) / 2) + (t * (spacing / ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size )))) * cos(t * (360 / ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size ))), (((start_d + (s * spacing * 2)) / 2) + (t * (spacing / ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size )))) * sin(t * (360 / ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size ))), 0] ];
    
    path_extrude(exShape=facetProfile, exPath=spiralPath);
}