diff --git a/50ft_v1/gnal_50ft.scad b/50ft_v1/gnal_50ft.scad new file mode 100644 index 0000000..0f42936 --- /dev/null +++ b/50ft_v1/gnal_50ft.scad @@ -0,0 +1,769 @@ +include <./threads.scad>; +//https://www.thingiverse.com/thing:186660 +include <./path_extrude.scad>; + +$fn = 20; + +H = 9.71; + +REEL_H = 42; +REEL_D = 225.67 + .4; +REEL_OUTER_WALL_H = 7.5; +REEL_OUTER_WALL_W = 5.9; + + +REEL_INNER_D = 50; +REEL_INNER_H = 7.5; +REEL_INNER_WALL_W = 20; + +REEL_MIDDLE_D = ((REEL_D - REEL_INNER_D) / 2) + REEL_INNER_D; +REEL_MIDDLE_WALL_H = 7.5; +REEL_MIDDLE_WALL_W = 3; + +SPOKE_COUNT = 24; + +OD = 10; +PITCH = 1.5; +THREAD = 1.6; +LEN = 21; + +/** + * Frame which the bottom of the spiral reel is mounted to. + */ +module reel_frame () { + //outer wall + difference () { + cylinder(r = REEL_D / 2, h = REEL_OUTER_WALL_H, center = true); + cylinder(r = (REEL_D / 2) - REEL_OUTER_WALL_W, h = REEL_OUTER_WALL_H + 1, center = true); + } + + difference () { + cylinder(r = REEL_MIDDLE_D / 2, h = REEL_MIDDLE_WALL_H, center = true); + cylinder(r = (REEL_MIDDLE_D / 2) - REEL_MIDDLE_WALL_W, h = REEL_MIDDLE_WALL_H + 1, center = true); + } + + //inner wall + difference () { + cylinder(r = REEL_INNER_D / 2, h = REEL_INNER_H, center = true); + cylinder(r = (REEL_INNER_D / 2) - REEL_INNER_WALL_W, h = REEL_INNER_H + 1, center = true); + } + + //standoff + B = 8.15; + D = 10.63; + + OUTER = ((D * 2) + B) / 2; + INNER = B / 2; + + translate ([0, 0, 4]) { + difference () { + cylinder(r = OUTER, h = 8, center = true); + cylinder(r = INNER, h = 8 + 1, center = true); + translate([0, 0, -8]) metric_thread (diameter=OD, pitch=PITCH, thread_size = THREAD, length=LEN); + } + translate([0, 13, 0]) rotate([0, 0, 45]) cube([8, 8, 8], center = true); + } + + //spokes + spokes(); + rotate([0, 0, 360 / (SPOKE_COUNT * 2)]) { + difference() { + spokes(); + cylinder(r = REEL_MIDDLE_D / 2, h = REEL_MIDDLE_WALL_H + 1, center = true); + } + } +} + +/** + * Spokes structure for the spiral reel frame + */ +module spokes () { + for (i = [0 : SPOKE_COUNT]) { + rotate([0, 0, i * (360 / SPOKE_COUNT)]) { + translate([0, (REEL_INNER_D / 2) + ((REEL_D - REEL_INNER_D) / 4) - 1, 0]) { + cube([3, (REEL_D - REEL_INNER_D) / 2, REEL_OUTER_WALL_H], center = true); + } + } + } +} + +/** + * The bottom spiral + */ +module spiral_bottom_old () { + union () { + difference () { + translate([0, 0, (-(H - REEL_OUTER_WALL_H) / 2) - .05]) reel_frame(); + } + rotate([0, 0, 270]) scale([-1, 1, 1]) spiral(); + } +} +/** + * Only needed for 50ft model, not the current target ATM. + */ +module spiral_top_old () { + union () { + difference () { + translate([0, 0, (-(H - REEL_OUTER_WALL_H) / 2) - .05]) reel_frame(); + } + rotate([0, 0, 270]) scale([-1, 1, 1]) spiral(); + } +} + + +/** + * Render all spiral facets for as many rotations as supplied + Using new module + */ +module spiral (START_D = 50, SPIRALS = 39) { + //STOP_D = 100; + + SPACING = 0.86;//1.34; + + TOP_T = 0.86; //thickness + BOTTOM_T = 1.4; + + START_R = START_D / 2; + union () { + for (i = [0 : $fn]) { + rotate ([0, 0, i * (360 / $fn)]) { + for (x = [0: (SPIRALS - 1)]) { + spiral_facet(i, x, START_R, SPACING, BOTTOM_T, TOP_T, H); + } + } + } + } +} + +/** + * Generates a single face of the spiral, in this case a trapazoidal + * shape. Issues are (1) performance (maybe use of hull()) and (2) all + * facet lenths are the same, despite the diameter. This means that + * there are excessive numbers of facets for the smaller spirals to + * compensate for the number of facets needed for the outer spiral. + */ + +module spiral_facet (i, x, START_R, SPACING, BOTTOM_T, TOP_T, H) { + STEP_SIZE = ((SPACING + BOTTOM_T) / $fn); + + STEP_OFFSET = i * STEP_SIZE; + SPIRAL_START_OFFSET = (x * (SPACING + BOTTOM_T)); + + ACTUAL_R = START_R + SPIRAL_START_OFFSET + STEP_OFFSET; + + L = 2 * (ACTUAL_R * tan((360 / $fn) / 2)); + + ANGLE = -atan( STEP_SIZE / (L / 2) ) / 2; + + OFFSET = START_R - (BOTTOM_T / 2) + SPIRAL_START_OFFSET + STEP_OFFSET; + + translate ([OFFSET, 0, - H / 2]) { + rotate ([0, 0, ANGLE]) { + //replace hull for quick render? + //test spiral lib + hull () { + translate([0, 0, H]) + cube([TOP_T, L, 0.1], center=true); + cube([BOTTOM_T, L, 0.1], center=true); + } + } + } +} + +/** + * Generates an arc with a diameter, width, height and total angle. + */ +module arc (D, W, H, ANGLE) { + R = D / 2; + difference () { + cylinder(r = R, h = H, center = true); + cylinder(r = R - W, h = H + 1, center = true); + if (ANGLE <= 90) { + translate([-R, -R, 0]) cube([D, D, H + 1], center=true); + translate([-R, R, 0]) cube([D, D, H + 1], center=true); + translate([R, -R, 0]) cube([D, D, H + 1], center=true); + rotate ([0, 0, ANGLE]) { + translate([R, R, 0]) { + cube([D, D, H + 1], center=true); + } + } + } else if (ANGLE <= 180) { + translate([-R, -R, 0]) cube([D, D, H + 1], center=true); + translate([R, -R, 0]) cube([D, D, H + 1], center=true); + rotate ([0, 0, ANGLE]) { + translate([R, R, 0]) { + cube([D, D, H + 1], center=true); + } + } + } else if (ANGLE <= 270) { + translate([R, -R, 0]) cube([D, D, H + 1], center=true); + rotate ([0, 0, ANGLE]) { + translate([R, R, 0]) { + cube([D, D, H + 1], center=true); + } + } + } else if (ANGLE <= 360) { + difference () { + union () { + difference () { + cylinder(r = R + 1, h = H + 1, center = true); + cylinder(r = R - W - 1, h = H + 2, center = true); + } + } + scale ([1, -1, 1]) { + translate([-R, -R, 0]) cube([D, D, H + 1], center=true); + translate([-R, R, 0]) cube([D, D, H + 1], center=true); + translate([R, -R, 0]) cube([D, D, H + 1], center=true); + rotate ([0, 0, 360 - ANGLE]) { + translate([R, R, 0]) { + cube([D, D, H + 1], center=true); + } + } + } + } + } + } +} + +module film () { + //sample film + arc(REEL_D - 4, .5, 16, 100); +} + +module spiral_top_old_debug (half = false, top = false) { + difference () { + translate([0, 0, 37]) rotate([180, 0, 180]) spiral_top_old(); + if (half) { + rotate([0, 0, 80]) translate([50, 0, 0]) cube([100, 100, 100], center = true); //half + } + if (top) { + translate([0, 0, 60]) cube([100, 100, 100], center = true); //just top + } + } +} + +module spiral_bottom_old_debug () { + difference () { + spiral_bottom_old(); + rotate([0, 0, 80]) translate([50, 0, 0]) cube([100, 100, 100], center = true); + } +} + +module exploded_view () { + spiral_bottom_old(); + translate([0, 0, 37 + 15]) rotate([180, 0, 180]) spiral_top_old(); + translate([0, 0, -10]) spiral_top_old_cap(); +} + +module spiral_test () { + //$fn = 100; + //spiral(START_D=34,SPIRALS=8); + translate([0, 0, (-(H - REEL_OUTER_WALL_H) / 2) - .05]) { + //difference () { + intersection() { + reel_frame(); + cylinder(r = 35, h = H + 20, center = true); + } + //cylinder(r = 22, h = H, center = true); + //} + } +} + +module spiral_bottom_core (thread = false) { + $fn = 360; + + core_center_h = 3; + + core_bottom_outer_d = 53; + core_bottom_outer_void_d = 44; + core_bottom_outer_h = 4.2; + + core_d = 29.5; + core_h = 8.5; + + core_bottom_d = 26; + core_bottom_h = 5; + + top_z_offset = (core_h / 2) - (core_center_h / 2); + + arms_outer_d = 48; + arms_inner_d = 48 - 7; + + core_void_outer_d = 20.5; + core_void_inner_d = 14.5; + core_void_h = 11.5; + + film_void = 0.8; + + translate([0, 0, -(core_bottom_outer_h / 2) - (core_center_h / 2) ]) difference () { + cylinder(r = core_bottom_outer_d / 2, h = core_bottom_outer_h + core_center_h, center = true); + cylinder(r = core_bottom_outer_void_d / 2, h = core_bottom_outer_h + core_center_h + 1, center = true); + } + difference () { + union() { + //center + translate([0, 0, -core_center_h / 2]) { + difference () { + cylinder(r = (core_bottom_outer_d - 1) / 2, h = core_center_h, center = true); + rotate([0, 0, -120]) translate([20, 0, 0]) rotate([0, 0, 45]) cube([20, 20, 20], center = true); + } + translate([0, 0, -1]) cylinder(r = core_d / 2, h = core_center_h, center = true); + } + //top + translate([0, 0, top_z_offset]) { + cylinder(r = core_d / 2, h = core_h + core_center_h, center = true); + } + //bottom + translate([0, 0, -(core_bottom_h / 2) - (core_center_h / 2)]) { + cylinder(r = core_bottom_d / 2, h = core_bottom_h + core_center_h, center = true); + } + } + //thread + if (thread) { + translate([0, 0, -LEN / 2]) metric_thread (diameter=OD + .2, pitch=PITCH, thread_size = THREAD, length=LEN); + } else { + cylinder(r = (OD + 0.2) / 2, h = LEN, center = true); + } + translate([0, 0, -2.3]) difference () { + cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true); + cylinder(r = core_void_inner_d / 2, h = core_void_h + 1, center = true); + } + } + + //arms + difference () { + union () { + translate([0, 0, top_z_offset]) difference() { + //adjust one arm inward + intersection () { + cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true); + translate([1, 0, 0]) cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true); + } + intersection () { + cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true); + translate([1, 0, 0]) cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true); + } + translate([0, arms_outer_d / 2, 0]) cube([arms_outer_d, arms_outer_d, arms_outer_d], center = true); + } + + translate([(arms_outer_d + arms_inner_d) / 4, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40); + //adjusted arm + translate([-((arms_outer_d + arms_inner_d) / 4) + 1, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40); + + difference () { + rotate([0, 0, -120]) translate([13.75, 0, top_z_offset]) cube([16, 20, core_h + core_center_h], center = true); + //remove piece from adjusting arm + translate([-19, -14, 0]) rotate([0, 0, 10]) cube([4, 4, 30], center = true); + rotate([0, 0, -120 - 37]) translate([18, 0, top_z_offset]) { + cylinder(r = 6.8 / 2, h = 30, center = true); + translate([-4, -2, 0]) cube([4, 4, 30], center = true); + } + rotate([0, 0, -120 + 37]) translate([18, 0, top_z_offset]) { + cylinder(r = 6.8 / 2, h = 30, center = true); + translate([-4, 2, 0]) cube([4, 4, 30], center = true); + } + } + } + rotate([0, 0, -120]) translate([20, -5, 0]) rotate([0, 0, 45]) cube([20, film_void, 30], center = true); + rotate([0, 0, -120]) translate([20, 5, 0]) rotate([0, 0, -45]) cube([20, film_void, 30], center = true); + rotate([0, 0, -120]) translate([25, 0, 0]) difference () { + cylinder(r = 8 / 2, h = 30, center = true); + translate([-6.9, 0, 0]) cube([8, 8, 30], center = true); + } + cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true); + rotate([0, 0, -120]) translate([20, 0, -1.5]) rotate([0, 0, 45]) cube([20, 20, 3.01], center = true); + } +} + +module spiral_bottom (threads = false, spiral_count = 40) { + outer_d = 215; + outer_d_inside = 209; + outer_h = 7.5; + + spoke_len = 81; + spoke_w = 3; + spoke_h = 4.2 + 3; + + spoke_2_len = 43; + spoke_2_h = 6; + + translate([0, 0, -3.75]) difference () { + cylinder(r = outer_d / 2, h = outer_h, center = true, $fn = 500); + cylinder(r = outer_d_inside / 2, h = outer_h + 1, center = true, $fn = 500); + } + + //rounding voids + difference () { + spiral_bottom_core(threads); + for (i = [0 : SPOKE_COUNT]) { + rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([0, 26.75, 0]) cylinder(r = 2, h = 20, center = true, $fn = 40); + } + } + + for (i = [0 : SPOKE_COUNT]) { + rotate([0, 0, i * (360 / SPOKE_COUNT)]) translate([(spoke_len / 2) + (48 / 2), 0, -3.6]) cube([spoke_len, spoke_w, spoke_h], center = true); + } + + for (i = [0 : SPOKE_COUNT]) { + rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([(outer_d / 2) - (spoke_2_len / 2) - 2, 0, -3]) cube([spoke_2_len, spoke_w, spoke_2_h], center = true); + } + + for (i = [0 : SPOKE_COUNT]) { + rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([63, 0, -3]) rotate([0, 0, 20]) cube([ spoke_w, 18, spoke_2_h], center = true); + } + + //translate([0, 0, 1]) rotate([0, 0, 0]) spiral_2 (START_D = 46.95, SPIRALS = spirals); //12 //40 + translate([0, 0, -.1]) spirals(spiral_count, 46.95 - 1.2, 2.075); +} + +module spiral_top_core () { + $fn = 360; + + core_center_h = 3; + + core_bottom_outer_d = 53; + core_bottom_outer_void_d = 44; + core_bottom_outer_h = 4.2; + + core_d = 29.5; + core_h = 8.5; + + core_bottom_d = 26; + core_bottom_h = 4.2; + + top_z_offset = (core_h / 2) - (core_center_h / 2); + + core_void_outer_d = 20.5; + core_void_inner_d = 14.5; + core_void_h = 11.5; + + arms_outer_d = 48; + arms_inner_d = 48 - 7; + + void_d = 18; + + film_void = 0.8; + + translate([0, 0, -(core_bottom_outer_h / 2) - (core_center_h / 2) ]) difference () { + cylinder(r = core_bottom_outer_d / 2, h = core_bottom_outer_h + core_center_h, center = true); + cylinder(r = core_bottom_outer_void_d / 2, h = core_bottom_outer_h + core_center_h + 1, center = true); + } + difference () { + union() { + //center + translate([0, 0, -core_center_h / 2]) { + difference () { + cylinder(r = (core_bottom_outer_d - 1) / 2, h = core_center_h, center = true); + rotate([0, 0, -120]) translate([20, 0, 0]) rotate([0, 0, 45]) cube([20, 20, 20], center = true); + } + translate([0, 0, -1]) cylinder(r = core_d / 2, h = core_center_h, center = true); + } + //top + translate([0, 0, top_z_offset]) { + cylinder(r = core_d / 2, h = core_h + core_center_h, center = true); + } + //bottom + translate([0, 0, -(core_bottom_h / 2) - (core_center_h / 2)]) { + cylinder(r = core_bottom_d / 2, h = core_bottom_h + core_center_h, center = true); + } + } + cylinder(r = void_d / 2, h = 30, center = true); + translate([0, 0, -12]) spacer_ridges(); + } + + //arms + difference () { + union () { + translate([0, 0, top_z_offset]) difference() { + //adjust the shorter arm + intersection () { + cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true); + translate([1, 0, 0]) cylinder(r = arms_outer_d / 2, h = core_h + core_center_h, center = true); + } + intersection () { + cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true); + translate([1, 0, 0]) cylinder(r = arms_inner_d / 2, h = core_h + core_center_h + 1, center = true); + } + translate([0, arms_outer_d / 2, 0]) cube([arms_outer_d, arms_outer_d, arms_outer_d], center = true); + } + + translate([(arms_outer_d + arms_inner_d) / 4, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40); + //adjusted arm + translate([-((arms_outer_d + arms_inner_d) / 4) + 1, 0, top_z_offset]) cylinder(r = 3.5 / 2, h = core_h + core_center_h, center = true, $fn = 40); + + difference () { + rotate([0, 0, -120]) translate([13.75, 0, top_z_offset]) cube([16, 20, core_h + core_center_h], center = true); + //remove piece from adjusting arm + translate([-19, -14, 0]) rotate([0, 0, 10]) cube([4, 4, 30], center = true); + rotate([0, 0, -120 - 37]) translate([18, 0, top_z_offset]) { + cylinder(r = 6.8 / 2, h = 30, center = true); + translate([-4, -2, 0]) cube([4, 4, 30], center = true); + } + rotate([0, 0, -120 + 37]) translate([18, 0, top_z_offset]) { + cylinder(r = 6.8 / 2, h = 30, center = true); + translate([-4, 2, 0]) cube([4, 4, 30], center = true); + } + } + } + rotate([0, 0, -120]) translate([20, -5, 0]) rotate([0, 0, 45]) cube([20, film_void, 30], center = true); + rotate([0, 0, -120]) translate([20, 5, 0]) rotate([0, 0, -45]) cube([20, film_void, 30], center = true); + rotate([0, 0, -120]) translate([25, 0, 0]) difference () { + cylinder(r = 8 / 2, h = 30, center = true); + translate([-6.9, 0, 0]) cube([8, 8, 30], center = true); + } + cylinder(r = core_void_outer_d / 2, h = core_void_h, center = true); + rotate([0, 0, -120]) translate([20, 0, -1.5]) rotate([0, 0, 45]) cube([20, 20, 3.01], center = true); + cylinder(r = void_d / 2, h = 30, center = true); + } +} + +module spiral_top (spiral_count = 40) { + outer_d = 215; + outer_d_inside = 209; + outer_h = 7.5; + + spoke_len = 81; + spoke_w = 3; + spoke_h = 4.2 + 3; + + spoke_2_len = 43; + spoke_2_h = 6; + + translate([0, 0, -3.75]) difference () { + cylinder(r = outer_d / 2, h = outer_h, center = true, $fn = 500); + cylinder(r = outer_d_inside / 2, h = outer_h + 1, center = true, $fn = 500); + } + + difference () { + spiral_top_core(); + for (i = [0 : SPOKE_COUNT]) { + rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([0, 26.75, 0]) cylinder(r = 2, h = 20, center = true, $fn = 40); + } + } + + for (i = [0 : SPOKE_COUNT]) { + rotate([0, 0, i * (360 / SPOKE_COUNT)]) translate([(spoke_len / 2) + (48 / 2), 0, -3.6]) cube([spoke_len, spoke_w, spoke_h], center = true); + } + + for (i = [0 : SPOKE_COUNT]) { + rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([(outer_d / 2) - (spoke_2_len / 2) - 2, 0, -3]) cube([spoke_2_len, spoke_w, spoke_2_h], center = true); + } + + for (i = [0 : SPOKE_COUNT]) { + rotate([0, 0, (i + 0.5) * (360 / SPOKE_COUNT)]) translate([63, 0, -3]) rotate([0, 0, 20]) cube([ spoke_w, 18, spoke_2_h], center = true); + } + + //translate([0, 0, 1]) rotate([0, 0, 0]) spiral_2 (START_D = 46.95, SPIRALS = spiral_count);//12 //40 + translate([0, 0, -.1]) spirals(spiral_count, 46.95 - 1.2, 2.075); +} + +module spacer_ridges () { + ridges = 16; + for (i = [0 : ridges]) { + rotate([0, 0, i * (360 / ridges)]) translate([13.5, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60); + } +} + +module spacer_ridges_loose () { + ridges = 16; + intersection () { + union () { + for (i = [0 : ridges]) { + rotate([0, 0, i * (360 / ridges)]) translate([13.7, 0, 0]) cylinder(r = 1.25, h = 8, $fn = 60); + } + } + cylinder(r = 13.7, h = 12, center = true); + } +} +module spacer_outer_ridges () { + ridges = 24; + H = 6.5; + difference () { + union () { + for (i = [0 : ridges]) { + rotate([0, 0, i * (360 / ridges)]) translate([14.6, 0, -4.75]) cylinder(r = 1.25, h = 8, $fn = 30); + } + } + translate([0, 0, -4.1]) difference () { + cylinder(r = 33 / 2, h = 4, center = true, $fn = 100); + cylinder(r2 = 33 / 2, r1 = 27.75 / 2, h = 4.1, center = true, $fn = 100); + } + } +} +module spacer () { + add = 3.25; + core_d = 29.5; + core_bottom_d = 26.2 + .2; + void_d = 22.5; + h = 8 + add; + translate([0, 0, (add / 2) - 1]) difference () { + union () { + difference () { + cylinder(r = core_d / 2, h = h, center = true, $fn = 200); + translate([0, 0, 8]) cylinder(r = core_bottom_d / 2, h = h, center = true, $fn = 200); + cylinder(r = void_d / 2, h = h + 1, center = true, $fn = 200); + } + translate([0, 0, 0]) spacer_ridges_loose(); + spacer_outer_ridges(); + } + //trim top + translate([0, 0, h - 0.1]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200); + //trim bottom + translate([0, 0, -h + 0.9]) cylinder(r = (core_d + 1) / 2, h = h, center = true, $fn = 200); + //finger grips + //translate([0, 24, 0]) rotate([-6, 0, 0]) cylinder(r = 10, h = 6, center = true, $fn = 100); + //translate([0, -24, 0]) rotate([6, 0, 0]) cylinder(r = 10, h = 6, center = true, $fn = 100); + } +} + +module top () { + H = 5; + center_d = 53; + spoke_w = 4.5; + spokes = 12; + outer_d = 215; + inner_d = 150; + void_d = 22.5; + hole_d = 3.5; + hole_spacing = 37; + core_d = 29.5; + core_bottom_d = 26.2; + + difference () { + union () { + cylinder(r = center_d / 2, h = H, center = true, $fn = 100); + for (i = [0 : spokes]) { + rotate([0, 0, i * (360 / spokes)]) translate([0, outer_d / 4, 0]) cube([spoke_w, (outer_d / 2) - 1, H], center = true); + } + } + //void + cylinder(r = void_d / 2, h = H + 1, center = true, $fn = 100); + //speed holes + for (i = [0 : 3]) { + rotate([0, 0, (i * 90) + 45]) translate([0, hole_spacing / 2, 0]) cylinder(r = hole_d / 2, h = H + 1, center = true); + } + //rounding of center cylinder + for (i = [0 : spokes]) { + rotate([0, 0, (i + 0.5) * (360 / spokes)]) translate([-2.75, 26.5, 0]) cylinder(r = 2, h = H+1, center = true, $fn = 40); + rotate([0, 0, (i + 0.5) * (360 / spokes)]) translate([2.75, 26.5, 0]) cylinder(r = 2, h = H+1, center = true, $fn = 40); + rotate([0, 0, (i + 0.5) * (360 / spokes)]) translate([0, 26.5, 0]) cube([5, 4, H + 1], center = true); + } + } + difference () { + cylinder(r = (center_d / 2) - 1.8, h = H, center = true, $fn = 200); + cylinder(r = (hole_spacing / 2) + 2, h = H + 1, center = true, $fn = 200); + } + //outer ring + difference () { + cylinder(r = outer_d / 2, h = H, center = true, $fn = 200); + cylinder(r = (outer_d / 2) - 5, h = H + 1, center = true, $fn = 200); + } + //inner ring + difference () { + cylinder(r = inner_d / 2, h = H, center = true, $fn = 200); + cylinder(r = (inner_d / 2) - 5, h = H + 1, center = true, $fn = 200); + } + //rounded cross connectors + for (i = [0 : spokes]) { + rotate([0, 0, i * (360 / spokes)]) translate([0, (inner_d / 2) - (spoke_w / 2), 0]) difference() { + cylinder(r = 6.5, h = H, center = true); + translate([6.25, 6, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60); + translate([-6.25, 6, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60); + translate([-6.1, -7, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60); + translate([6.1, -7, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60); + } + } + difference () { + union () { + translate([0, 0, 3.75 + 1]) cylinder(r = core_d / 2, h = H, center = true, $fn = 60); + translate([0, 0, 3.75 + 1 + 3.2]) cylinder(r = core_bottom_d / 2, h = H, center = true, $fn = 60); + } + cylinder(r = void_d / 2, h = H * 5 , center = true, $fn = 100); + translate([0, 0, 4 + 1 + 2.25]) spacer_ridges(); + } + //rounded outer ring connectors + for (i = [0 : spokes]) { + rotate([0, 0, i * (360 / spokes)]) translate([0, 205 / 2, 0]) difference () { + cube([13, 9, H], center = true); + translate([6.2, -4.2, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60); + translate([-6.2, -4.2, 0]) cylinder(r = 4, h = H + 1, center = true, $fn = 60); + } + } +} + +module spiral_facet_2 (i, SPIRAL, START_R = 48, SPACING = 2, FACET_SIZE = 1, FN = 360) { + + BOTTOM_T = 1.2; + TOP_T = .3; + H = 2.1; + + STEP_SIZE = SPACING / FN; + STEP_OFFSET = (SPIRAL * SPACING) + (i * STEP_SIZE); + + ROT = i* (360 / FN); + ANGLE = 0; + + OFFSET = START_R + STEP_OFFSET; + + rotate([0, 0, ROT]) translate ([OFFSET, 0, - H / 2]) { + rotate ([0, 0, ANGLE]) { + hull () { + translate([0, 0, H]) + cube([TOP_T, FACET_SIZE, 0.1], center=true); + cube([BOTTOM_T, FACET_SIZE, 0.1], center=true); + } + } + } +} + +module spiral_2 (SPIRALS = 40, START_D = 48) { + SPACING = 2.075; + FACET_SIZE = 2; + for (SPIRAL = [0 : SPIRALS - 1]) { + //C = PI * R^2 + C = PI * pow(( (START_D / 2) + (SPIRAL * SPACING) ) / 2, 2); + FN = ceil( C / FACET_SIZE ); + for (i = [0 : FN - 1]) { + spiral_facet_2(i, SPIRAL, START_D / 2, SPACING, FACET_SIZE, FN); + } + } +} + +module spirals (count = 40, start_d = 48, spacing = 2) { + facet_size = 30; + bottom = 1.2; + top = .3; + top_offset = (bottom - top); + h = 2.2; + + od = start_d + (spacing * 2 * count); + echo("SPIRAL LENGTH", PI * count * (od + start_d + 1) / 2); + echo("OUTER D", od); + + facetProfile = [[0, 0], [top_offset, -h], [bottom, -h], [bottom, 0]]; + union () { + for (s = [0 : count - 1]) { + d = start_d + (s * spacing * 2); + c = PI * pow(d / 2, 2); + $fn = ceil( c / facet_size ); + angle_i = 360 / $fn; + increment = spacing / $fn; + spiralPath = [ for(t = [0 : $fn + 1]) [((d / 2) + (t * increment)) * cos(t * angle_i), ((d / 2) + (t * increment)) * sin(t * angle_i), 0] ]; + path_extrude(exShape=facetProfile, exPath=spiralPath); + } + } +} + +module spirals_compressed (count = 40, start_d = 48, spacing = 2 ) { + facet_size = 30; + bottom = 1.2; + top = .3; + top_offset = (bottom - top); + h = 2.2; + + facetProfile = [[0, 0], [top_offset, -h], [bottom, -h], [bottom, 0]]; + + spiralPath = [ for (s = [0 : count - 1]) for(t = [0 : ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size ) - 1]) [(((start_d + (s * spacing * 2)) / 2) + (t * (spacing / ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size )))) * cos(t * (360 / ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size ))), (((start_d + (s * spacing * 2)) / 2) + (t * (spacing / ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size )))) * sin(t * (360 / ceil( (PI * pow((start_d + (s * spacing * 2)) / 2, 2)) / facet_size ))), 0] ]; + + path_extrude(exShape=facetProfile, exPath=spiralPath); +} diff --git a/50ft_v1/path_extrude.scad b/50ft_v1/path_extrude.scad new file mode 100644 index 0000000..aa2b0da --- /dev/null +++ b/50ft_v1/path_extrude.scad @@ -0,0 +1,195 @@ +// path_extrude.scad -- Extrude a path in 3D space +// usage: add "use ;" to the top of your OpenSCAD source code + +// Copyright (C) 2014-2019 David Eccles (gringer) + +// This program is free software: you can redistribute it and/or modify +// it under the terms of the GNU General Public License as published by +// the Free Software Foundation, either version 3 of the License, or +// (at your option) any later version. + +// This program is distributed in the hope that it will be useful, +// but WITHOUT ANY WARRANTY; without even the implied warranty of +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +// GNU General Public License for more details. + +// You should have received a copy of the GNU General Public License +// along with this program. If not, see . + +// Determine the projection of a point on a plane centered at c1 with normal n1 +function project(p, c, n) = + p - (n * (p - c)) * n / (n * n); + +// determine angle between two points with a given normal orientation +// see https://stackoverflow.com/questions/14066933/ +// direct-way-of-computing-clockwise-angle-between-2-vectors +// dot = p1 * p2; +// det = (p1[0]*p2[1]*n1[2] + p2[0]*n1[1]*p1[2] + n1[0]*p1[1]*p2[2]) - +// (n1[0]*p2[1]*p1[2] + p1[0]*n1[1]*p2[2] + p2[0]*p1[1]*n1[2]); +// atan2(det, dot); +// determine angle between two planar points and a centre +// with a given normal orientation +function getPlanarAngle(p1, p2, c1, n1) = + let(p1 = p1-c1, n1=n1 / norm(n1), p2=p2-c1) + atan2((p1[0]*p2[1]*n1[2] + p2[0]*n1[1]*p1[2] + n1[0]*p1[1]*p2[2]) - + (n1[0]*p2[1]*p1[2] + p1[0]*n1[1]*p2[2] + p2[0]*p1[1]*n1[2]), p1 * p2); + +function c3D(tPoints) = + (len(tPoints[0]) == undef) ? // single point + c3D([tPoints])[0] : + (len(tPoints[0]) < 3) ? // collection of 2D points + tPoints * [[1,0,0],[0,1,0]] : + tPoints; // 3D points + +// translate a point (or points) +function myTranslate(ofs, points, acc = []) = + (len(points[0]) == undef) ? + myTranslate(ofs, [points])[0] : + [ for(i = [0:(len(points) - 1)]) + [ for(d = [0:(len(points[0])-1)]) (ofs[d] + points[i][d])]]; + +// rotate a point (or points) +function myRotate(rotVec, points) = + let(rotX = [[1, 0, 0], + [0, cos(rotVec[0]), -sin(rotVec[0])], + [0, sin(rotVec[0]), cos(rotVec[0])]], + rotY = [[ cos(rotVec[1]), 0,-sin(rotVec[1])], + [ 0, 1, 0], + [ sin(rotVec[1]), 0, cos(rotVec[1])]], + rotZ = [[ cos(rotVec[2]), sin(rotVec[2]), 0], + [ sin(rotVec[2]), -cos(rotVec[2]), 0], + [0, 0, 1]]) + (len(points[0]) == undef) ? + myRotate(rotVec, [points])[0] : + c3D(points) * rotX * rotY * rotZ; + +// Determine spherical rotation for cartesian coordinates +function rToS(pt) = + [-acos((pt[2]) / norm(pt)), + 0, + -atan2(pt[0],pt[1])]; + +function calcPreRot(p1, p2, p3) = + let(n1=p2-p1, // normal between the two points (i.e. the plane that the polygon sits on) + n2=p3-p2, + rt1=rToS(n1), + rt2=rToS(n2), + pj1=(p2 + myRotate(rt2, [[1e42,0,0]])[0]), + pj2=project(p=(p1 + myRotate(rt1, [[1e42,0,0]])[0]), c=p2, n=n2)) + getPlanarAngle(p1=pj1, p2=pj2, c1=p2, n1=n2); + +function cumSum(x, res=[]) = + (len(x) == len(res)) ? concat([0], res) : + (len(res) == 0) ? cumSum(x=x, res=[x[0]]) : + cumSum(x=x, res=concat(res, [x[len(res)] + res[len(res)-1]])); + +// Create extrusion side panels for one polygon segment as triangles. +// Note: panels are not necessarily be planar due to path twists +function makeSides(shs, pts, ofs=0) = + concat( + [for(i=[0:(shs-1)]) [i+ofs, ((i+1) % shs + ofs + shs) % (shs * pts), + (i+1) % shs + ofs]], + [for(i=[0:(shs-1)]) [((i+1) % shs + ofs + shs) % (shs * pts), + i+ofs, (i + ofs + shs) % (shs * pts)]]); + +// Concatenate the contents of the outermost list +function flatten(A, acc = [], aDone = 0) = + (aDone >= len(A)) ? acc : + flatten(A, acc=concat(acc, A[aDone]), aDone = aDone + 1); + +// Linearly interpolate between two shapes +function makeTween(shape1, shape2, t) = + (t == 0) ? shape1 : + (t == 1) ? shape2 : + [for (i=[0:(len(shape1)-1)]) + (shape1[i]*(1-t) + shape2[i % len(shape2)]*(t))]; + +// Extrude a 2D shape through a 3D path +// Note: merge has two effects: +// 1) Removes end caps +// 2) Adjusts the rotation of each path point +// so that the end and start match up +module path_extrude(exPath, exShape, exShape2=[], + exRots = [0], exScale = [1], merge=false, preRotate=true){ + exShapeTween = (len(exShape2) == 0) ? + exShape : exShape2; + shs = len(exShape); // shs: shape size + pts = len(exPath); // pts: path size + exPathX = (merge) ? concat(exPath, [exPath[0], exPath[1]]) : + concat(exPath, + [exPath[pts-1] + (exPath[pts-1] - exPath[pts-2]), + exPath[pts-1] + 2*(exPath[pts-1] - exPath[pts-2])]); + exScaleX = (len(exScale) == len(exPath)) ? exScale : + [for (i = [0:(pts-1)]) exScale[i % len(exScale)]]; + preRots = [for(i = [0:(pts-1)]) + preRotate ? + calcPreRot(p1=exPathX[i], // "current" point on the path + p2=exPathX[(i+1)], // "next" point on the path + p3=exPathX[(i+2)]) : + 0 ]; + cumPreRots = cumSum(preRots); + seDiff = cumPreRots[len(cumPreRots)-1]; // rotation difference (start - end) + // rotation adjustment to get start to look like end + seAdj = -seDiff / (len(cumPreRots)); + adjPreRots = (!merge) ? cumPreRots : + [for(i = [0:(pts-1)]) (cumPreRots[i] + seAdj * i)]; + adjExRots = (len(exRots) == 1) ? + [for(i = [0:(len(adjPreRots)-1)]) (adjPreRots[i] + exRots[0])] : + [for(i = [0:(len(adjPreRots)-1)]) (adjPreRots[i] + exRots[i % len(exRots)])]; + phPoints = flatten([ + for(i = [0:(pts-1)]) + let(p1=exPathX[i], + p2=exPathX[(i+1)], + n1=p2-p1, // normal between the two points + rt1=rToS(n1)) + myTranslate(p1, myRotate(rt1, myRotate([0,0,-adjExRots[i]], + c3D(makeTween(exShape, exShapeTween, i / (pts-1)) * + exScaleX[i])))) + ]); + if(merge){ // just the surface, no end caps + polyhedron(points=phPoints, + faces=flatten([ + for(i = [0:(pts-1)]) + makeSides(shs, pts, ofs=shs*i) + ]) + ); + } else { + polyhedron(points=phPoints, + faces=concat( + flatten([ + for(i = [0:(pts-2)]) + makeSides(shs, pts, ofs=shs*i) + ]), + concat( // add in start / end covers + [[for(i= [0:(shs-1)]) i]], + [[for(i= [(len(phPoints)-1):-1:(len(phPoints)-shs)]) i]] + ) + )); + } +} + +myPathTrefoil = [ for(t = [0:(360 / 101):359]) [ // trefoil knot + 5*(.41*cos(t) - .18*sin(t) - .83*cos(2*t) - .83*sin(2*t) - + .11*cos(3*t) + .27*sin(3*t)), + 5*(.36*cos(t) + .27*sin(t) - 1.13*cos(2*t) + .30*sin(2*t) + + .11*cos(3*t) - .27*sin(3*t)), + 5*(.45*sin(t) - .30*cos(2*t) +1.13*sin(2*t) - + .11*cos(3*t) + .27*sin(3*t))] ]; + +myPointsOctagon = + let(ofs1=15) + [ for(t = [0:(360/8):359]) + ((t==90)?1:2) * [cos(t+ofs1),sin(t+ofs1)]]; +myPointsChunkOctagon = + let(ofs1=15) + [ for(t = [0:(360/8):359]) + ((t==90)?0.4:1.9) * + [cos((t * 135/360 + 45)+ofs1+45)+0.5,sin((t * 135/360 + 45)+ofs1+45)]]; +//myPoints = [ for(t = [0:(360/8):359]) 2 * [cos(t+45),sin(t+45)]]; + +pts=[2,0,0.5]; + +/*translate([0,0,0]) { + path_extrude(exRots = [$t*360], exShape=myPointsOctagon, + exPath=myPathTrefoil, merge=true); +}*/ diff --git a/50ft_v1/spacer.scad b/50ft_v1/spacer.scad new file mode 100644 index 0000000..b29abc3 --- /dev/null +++ b/50ft_v1/spacer.scad @@ -0,0 +1,3 @@ +include <./gnal_50ft.scad>; + +spacer(); \ No newline at end of file diff --git a/50ft_v1/spiral_bottom.scad b/50ft_v1/spiral_bottom.scad new file mode 100644 index 0000000..b50fb6e --- /dev/null +++ b/50ft_v1/spiral_bottom.scad @@ -0,0 +1,3 @@ +include <./gnal_50ft.scad>; + +spiral_bottom(); \ No newline at end of file diff --git a/50ft_v1/spiral_top.scad b/50ft_v1/spiral_top.scad new file mode 100644 index 0000000..4401228 --- /dev/null +++ b/50ft_v1/spiral_top.scad @@ -0,0 +1,3 @@ +include <./gnal_50ft.scad>; + +spiral_top(); \ No newline at end of file diff --git a/50ft_v1/threads.scad b/50ft_v1/threads.scad new file mode 100644 index 0000000..a254f06 --- /dev/null +++ b/50ft_v1/threads.scad @@ -0,0 +1,372 @@ +/* + * ISO-standard metric threads, following this specification: + * http://en.wikipedia.org/wiki/ISO_metric_screw_thread + * + * Copyright 2017 Dan Kirshner - dan_kirshner@yahoo.com + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * See . + * + * Version 2.3. 2017-08-31 Default for leadin: 0 (best for internal threads). + * Version 2.2. 2017-01-01 Correction for angle; leadfac option. (Thanks to + * Andrew Allen .) + * Version 2.1. 2016-12-04 Chamfer bottom end (low-z); leadin option. + * Version 2.0. 2016-11-05 Backwards compatibility (earlier OpenSCAD) fixes. + * Version 1.9. 2016-07-03 Option: tapered. + * Version 1.8. 2016-01-08 Option: (non-standard) angle. + * Version 1.7. 2015-11-28 Larger x-increment - for small-diameters. + * Version 1.6. 2015-09-01 Options: square threads, rectangular threads. + * Version 1.5. 2015-06-12 Options: thread_size, groove. + * Version 1.4. 2014-10-17 Use "faces" instead of "triangles" for polyhedron + * Version 1.3. 2013-12-01 Correct loop over turns -- don't have early cut-off + * Version 1.2. 2012-09-09 Use discrete polyhedra rather than linear_extrude () + * Version 1.1. 2012-09-07 Corrected to right-hand threads! + */ + +// Examples. +// +// Standard M8 x 1. +// metric_thread (diameter=8, pitch=1, length=4); + +// Square thread. +// metric_thread (diameter=8, pitch=1, length=4, square=true); + +// Non-standard: long pitch, same thread size. +//metric_thread (diameter=8, pitch=4, length=4, thread_size=1, groove=true); + +// Non-standard: 20 mm diameter, long pitch, square "trough" width 3 mm, +// depth 1 mm. +//metric_thread (diameter=20, pitch=8, length=16, square=true, thread_size=6, +// groove=true, rectangle=0.333); + +// English: 1/4 x 20. +//english_thread (diameter=1/4, threads_per_inch=20, length=1); + +// Tapered. Example -- pipe size 3/4" -- per: +// http://www.engineeringtoolbox.com/npt-national-pipe-taper-threads-d_750.html +// english_thread (diameter=1.05, threads_per_inch=14, length=3/4, taper=1/16); + +// Thread for mounting on Rohloff hub. +//difference () { +// cylinder (r=20, h=10, $fn=100); +// +// metric_thread (diameter=34, pitch=1, length=10, internal=true, n_starts=6); +//} + + +// ---------------------------------------------------------------------------- +function segments (diameter) = min (50, ceil (diameter*6)); + + +// ---------------------------------------------------------------------------- +// diameter - outside diameter of threads in mm. Default: 8. +// pitch - thread axial "travel" per turn in mm. Default: 1. +// length - overall axial length of thread in mm. Default: 1. +// internal - true = clearances for internal thread (e.g., a nut). +// false = clearances for external thread (e.g., a bolt). +// (Internal threads should be "cut out" from a solid using +// difference ()). +// n_starts - Number of thread starts (e.g., DNA, a "double helix," has +// n_starts=2). See wikipedia Screw_thread. +// thread_size - (non-standard) axial width of a single thread "V" - independent +// of pitch. Default: same as pitch. +// groove - (non-standard) subtract inverted "V" from cylinder (rather than +// add protruding "V" to cylinder). +// square - Square threads (per +// https://en.wikipedia.org/wiki/Square_thread_form). +// rectangle - (non-standard) "Rectangular" thread - ratio depth/(axial) width +// Default: 1 (square). +// angle - (non-standard) angle (deg) of thread side from perpendicular to +// axis (default = standard = 30 degrees). +// taper - diameter change per length (National Pipe Thread/ANSI B1.20.1 +// is 1" diameter per 16" length). Taper decreases from 'diameter' +// as z increases. +// leadin - 0 (default): no chamfer; 1: chamfer (45 degree) at max-z end; +// 2: chamfer at both ends, 3: chamfer at z=0 end. +// leadfac - scale of leadin chamfer (default: 1.0 = 1/2 thread). +module metric_thread (diameter=8, pitch=1, length=1, internal=false, n_starts=1, + thread_size=-1, groove=false, square=false, rectangle=0, + angle=30, taper=0, leadin=0, leadfac=1.0) +{ + // thread_size: size of thread "V" different than travel per turn (pitch). + // Default: same as pitch. + local_thread_size = thread_size == -1 ? pitch : thread_size; + local_rectangle = rectangle ? rectangle : 1; + + n_segments = segments (diameter); + h = (square || rectangle) ? local_thread_size*local_rectangle/2 : local_thread_size / (2 * tan(angle)); + + h_fac1 = (square || rectangle) ? 0.90 : 0.625; + + // External thread includes additional relief. + h_fac2 = (square || rectangle) ? 0.95 : 5.3/8; + + tapered_diameter = diameter - length*taper; + + difference () { + union () { + if (! groove) { + metric_thread_turns (diameter, pitch, length, internal, n_starts, + local_thread_size, groove, square, rectangle, angle, + taper); + } + + difference () { + + // Solid center, including Dmin truncation. + if (groove) { + cylinder (r1=diameter/2, r2=tapered_diameter/2, + h=length, $fn=n_segments); + } else if (internal) { + cylinder (r1=diameter/2 - h*h_fac1, r2=tapered_diameter/2 - h*h_fac1, + h=length, $fn=n_segments); + } else { + + // External thread. + cylinder (r1=diameter/2 - h*h_fac2, r2=tapered_diameter/2 - h*h_fac2, + h=length, $fn=n_segments); + } + + if (groove) { + metric_thread_turns (diameter, pitch, length, internal, n_starts, + local_thread_size, groove, square, rectangle, + angle, taper); + } + } + } + + // chamfer z=0 end if leadin is 2 or 3 + if (leadin == 2 || leadin == 3) { + difference () { + cylinder (r=diameter/2 + 1, h=h*h_fac1*leadfac, $fn=n_segments); + + cylinder (r2=diameter/2, r1=diameter/2 - h*h_fac1*leadfac, h=h*h_fac1*leadfac, + $fn=n_segments); + } + } + + // chamfer z-max end if leadin is 1 or 2. + if (leadin == 1 || leadin == 2) { + translate ([0, 0, length + 0.05 - h*h_fac1*leadfac]) { + difference () { + cylinder (r=diameter/2 + 1, h=h*h_fac1*leadfac, $fn=n_segments); + cylinder (r1=tapered_diameter/2, r2=tapered_diameter/2 - h*h_fac1*leadfac, h=h*h_fac1*leadfac, + $fn=n_segments); + } + } + } + } +} + + +// ---------------------------------------------------------------------------- +// Input units in inches. +// Note: units of measure in drawing are mm! +module english_thread (diameter=0.25, threads_per_inch=20, length=1, + internal=false, n_starts=1, thread_size=-1, groove=false, + square=false, rectangle=0, angle=30, taper=0, leadin=0, + leadfac=1.0) +{ + // Convert to mm. + mm_diameter = diameter*25.4; + mm_pitch = (1.0/threads_per_inch)*25.4; + mm_length = length*25.4; + + echo (str ("mm_diameter: ", mm_diameter)); + echo (str ("mm_pitch: ", mm_pitch)); + echo (str ("mm_length: ", mm_length)); + metric_thread (mm_diameter, mm_pitch, mm_length, internal, n_starts, + thread_size, groove, square, rectangle, angle, taper, leadin, + leadfac); +} + +// ---------------------------------------------------------------------------- +module metric_thread_turns (diameter, pitch, length, internal, n_starts, + thread_size, groove, square, rectangle, angle, + taper) +{ + // Number of turns needed. + n_turns = floor (length/pitch); + + intersection () { + + // Start one below z = 0. Gives an extra turn at each end. + for (i=[-1*n_starts : n_turns+1]) { + translate ([0, 0, i*pitch]) { + metric_thread_turn (diameter, pitch, internal, n_starts, + thread_size, groove, square, rectangle, angle, + taper, i*pitch); + } + } + + // Cut to length. + translate ([0, 0, length/2]) { + cube ([diameter*3, diameter*3, length], center=true); + } + } +} + + +// ---------------------------------------------------------------------------- +module metric_thread_turn (diameter, pitch, internal, n_starts, thread_size, + groove, square, rectangle, angle, taper, z) +{ + n_segments = segments (diameter); + fraction_circle = 1.0/n_segments; + for (i=[0 : n_segments-1]) { + rotate ([0, 0, i*360*fraction_circle]) { + translate ([0, 0, i*n_starts*pitch*fraction_circle]) { + //current_diameter = diameter - taper*(z + i*n_starts*pitch*fraction_circle); + thread_polyhedron ((diameter - taper*(z + i*n_starts*pitch*fraction_circle))/2, + pitch, internal, n_starts, thread_size, groove, + square, rectangle, angle); + } + } + } +} + + +// ---------------------------------------------------------------------------- +module thread_polyhedron (radius, pitch, internal, n_starts, thread_size, + groove, square, rectangle, angle) +{ + n_segments = segments (radius*2); + fraction_circle = 1.0/n_segments; + + local_rectangle = rectangle ? rectangle : 1; + + h = (square || rectangle) ? thread_size*local_rectangle/2 : thread_size / (2 * tan(angle)); + outer_r = radius + (internal ? h/20 : 0); // Adds internal relief. + //echo (str ("outer_r: ", outer_r)); + + // A little extra on square thread -- make sure overlaps cylinder. + h_fac1 = (square || rectangle) ? 1.1 : 0.875; + inner_r = radius - h*h_fac1; // Does NOT do Dmin_truncation - do later with + // cylinder. + + translate_y = groove ? outer_r + inner_r : 0; + reflect_x = groove ? 1 : 0; + + // Make these just slightly bigger (keep in proportion) so polyhedra will + // overlap. + x_incr_outer = (! groove ? outer_r : inner_r) * fraction_circle * 2 * PI * 1.02; + x_incr_inner = (! groove ? inner_r : outer_r) * fraction_circle * 2 * PI * 1.02; + z_incr = n_starts * pitch * fraction_circle * 1.005; + + /* + (angles x0 and x3 inner are actually 60 deg) + + /\ (x2_inner, z2_inner) [2] + / \ + (x3_inner, z3_inner) / \ + [3] \ \ + |\ \ (x2_outer, z2_outer) [6] + | \ / + | \ /| + z |[7]\/ / (x1_outer, z1_outer) [5] + | | | / + | x | |/ + | / | / (x0_outer, z0_outer) [4] + | / | / (behind: (x1_inner, z1_inner) [1] + |/ | / + y________| |/ + (r) / (x0_inner, z0_inner) [0] + + */ + + x1_outer = outer_r * fraction_circle * 2 * PI; + + z0_outer = (outer_r - inner_r) * tan(angle); + //echo (str ("z0_outer: ", z0_outer)); + + //polygon ([[inner_r, 0], [outer_r, z0_outer], + // [outer_r, 0.5*pitch], [inner_r, 0.5*pitch]]); + z1_outer = z0_outer + z_incr; + + // Give internal square threads some clearance in the z direction, too. + bottom = internal ? 0.235 : 0.25; + top = internal ? 0.765 : 0.75; + + translate ([0, translate_y, 0]) { + mirror ([reflect_x, 0, 0]) { + + if (square || rectangle) { + + // Rule for face ordering: look at polyhedron from outside: points must + // be in clockwise order. + polyhedron ( + points = [ + [-x_incr_inner/2, -inner_r, bottom*thread_size], // [0] + [x_incr_inner/2, -inner_r, bottom*thread_size + z_incr], // [1] + [x_incr_inner/2, -inner_r, top*thread_size + z_incr], // [2] + [-x_incr_inner/2, -inner_r, top*thread_size], // [3] + + [-x_incr_outer/2, -outer_r, bottom*thread_size], // [4] + [x_incr_outer/2, -outer_r, bottom*thread_size + z_incr], // [5] + [x_incr_outer/2, -outer_r, top*thread_size + z_incr], // [6] + [-x_incr_outer/2, -outer_r, top*thread_size] // [7] + ], + + faces = [ + [0, 3, 7, 4], // This-side trapezoid + + [1, 5, 6, 2], // Back-side trapezoid + + [0, 1, 2, 3], // Inner rectangle + + [4, 7, 6, 5], // Outer rectangle + + // These are not planar, so do with separate triangles. + [7, 2, 6], // Upper rectangle, bottom + [7, 3, 2], // Upper rectangle, top + + [0, 5, 1], // Lower rectangle, bottom + [0, 4, 5] // Lower rectangle, top + ] + ); + } else { + + // Rule for face ordering: look at polyhedron from outside: points must + // be in clockwise order. + polyhedron ( + points = [ + [-x_incr_inner/2, -inner_r, 0], // [0] + [x_incr_inner/2, -inner_r, z_incr], // [1] + [x_incr_inner/2, -inner_r, thread_size + z_incr], // [2] + [-x_incr_inner/2, -inner_r, thread_size], // [3] + + [-x_incr_outer/2, -outer_r, z0_outer], // [4] + [x_incr_outer/2, -outer_r, z0_outer + z_incr], // [5] + [x_incr_outer/2, -outer_r, thread_size - z0_outer + z_incr], // [6] + [-x_incr_outer/2, -outer_r, thread_size - z0_outer] // [7] + ], + + faces = [ + [0, 3, 7, 4], // This-side trapezoid + + [1, 5, 6, 2], // Back-side trapezoid + + [0, 1, 2, 3], // Inner rectangle + + [4, 7, 6, 5], // Outer rectangle + + // These are not planar, so do with separate triangles. + [7, 2, 6], // Upper rectangle, bottom + [7, 3, 2], // Upper rectangle, top + + [0, 5, 1], // Lower rectangle, bottom + [0, 4, 5] // Lower rectangle, top + ] + ); + } + } + } +} diff --git a/50ft_v1/top.scad b/50ft_v1/top.scad new file mode 100644 index 0000000..854306e --- /dev/null +++ b/50ft_v1/top.scad @@ -0,0 +1,3 @@ +include <./gnal_50ft.scad>; + +top(); \ No newline at end of file